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FOREWORD

The purpose of his technical report is to provide a cursory outline of

structural optimization. It is an informal report, intended for training. The

material is collected entirely from the open literature.
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1.0 INTRODUCTION

In modern times more and more tasks of engineering design are being relegated to

computers because of their immense computing power and versatility. The new comput-

ers offer significant opportunities for advancing computer-aided design in the true sense.

Design of a total system with all the complexities of the interacting disciplines may be a

reality in the not too distant future. Integrated engineering optimization systems are in

development around the world in pursuit of this goal. The implications of this scenario are

far reaching in improving. product quality and reliability while reducing cost and design

time.

The flip side of this scenario is concern about mindless automation and its implications

on creativity. It is disconcerting to see young engineers spending all their productive time

in front of computer terminals believing results from the black box with little concern or

understanding of the modeling nuances and errors. The most frequently asked question is:

Is design automation really reducing manpower and time or simply creating a quagmire?

Are we really designing more airplanes in a shorter time than in the 50s and 60s? The

answer is probably negative. However, there is no question that modern systems are more

complex and performance goals are much more stringent, and they cannot be met without

extensive trade off studies and optimization on supercomputers. A thorough understanding

of the disciplines and the design requirements is as important now as before. Reliance on

ready made design software (black boxes) without this understanding is counter productive.

This report, prepared for training, is intended to bring out the elements of structural

design optimization on modern computers. The first section gives a cursory description of

the requirements and essential disciplines involved in aircraft structural design. The second

section is an optimization paper that provides the basis for optimization using large finite



element assemblies. The third section provides a summary of design sensitivity analysis

which is an essential element of optimization. The two appendices are the descriptions of

two training programs for analysis and optimization. Each of these sections has their own

references. This is an informal memo intended for training and is a collection of material

entirely from the open literature.
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2.0 REQUIREMENTS FOR AIRCRAFT STRUCTURAL DESIGN

The structural design requirements of an aircraft are derived from a number of dis-

ciplines. Aircraft design is generally a group effort and effective communication between

the groups is essential for designing optimum structures as well as to reduce design time

and cost. This effective communication can be established if each group has at least a

rudimentary understanding of the functions of the other groups. This interdisciplinary

communication is becoming even more important as the design functions are delegated

more and more to computers. The interaction between the following groups is very much

desirable in structural optimization.

1. Loads (Aerodynamics, Ground Loads, etc.)

2. Structures

3. Weight and Balance/Mass Properties

4. Power Plant Analysis

5. Materials and Processes

6. Controls Analysis

Loads

Like all other structures the aircraft must be designed to withstand the loads induced

by the environment in which it operates. The loads on the aircraft can be classified into

three broad categories:

1. Maneuver Loads
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2. Ground Loads

3. Turbulence

Maneuver Loads: Air Loads & Inertia Loads

The maneuver loads are generally air loads resulting from the way the aircraft operates.
These maneuvers can be classified into the following simple movements of the aircraft.

1. Forward Acceleration

2. Roll

3. Pitch

1. Yaw

5. Pitch and Yaw

6. Roll and Pitch

7. Roll and Yaw

8. Roll, Pitch and Yaw

The first three maneuvers will have the angle of yaw zero and no yawing couple, and

they are regarded as symmetrical maneuvers. In all the others the angle of yaw and the

yawing couple will not both be zero and these are termed asymmetrical maneuvers. The

forces applied to the aircraft are the aerodynamic forces on the external surfaces, the

g"ravitational forces, and the forces fron tIL, propulsion unit. These furces are governed by
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Fig 1: Simple Movements of the Aircraft
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Newton's laws of motion and they can be derived from basic" momentum equations. The

equations of motion relative to the principal axes of inertia can be written as

X = m(& - rV + qW) (1)

Y = m(V -pW + ru) (2)

Z = m(W - qU + pV) (3)

L =A + (C - B)qr (4)

M =B + (A - C)rp (5)

N Ci + (B - A)pq (6)

The aircraft's principal inertia axes are shown in Figure 2. X, Y, Z are the forces in

the directions X. Y, Z. rn is the tota! mass of the aircraft. L, M, N are the moments

about the axes X, Y, Z respectively. A, B. C are the moments of inertia of the aircraft

about the same axes. U, V, W are the velocities (translational) and p, q, r are the angular

velocities in the direction and about the principal axes.

For small angles of rotation the equations of motion can be linearized and simplified.

For simple maneuvers listed earlier the linearized equations can be written as follows:
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Fig 2: Ai rcraft's Principal Inertia Axes
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1. Forward Acceleration

X = (7)

2. Pure Roll (under very restrictive conditions)

L = Ap (8)

3. Pure Pitch

Z -(W-qU) M= B (9)

4. Pure Yaw

Y =m(V + rU) N= C (10)

5. Pitch and Yaw

Y = m(l + rU) Z = M(W - qU) M = B4 N=C" (11)

For the other maneuvers all six equations (1-6) are involved. For any of these maneuvers

to be attainable it must be possible to apply the three control couples separately and the

trim of the aircraft in the other directions to be unaltered.

In all of the equations listed so far the left-hand side represents the applied force or

couple at the C-G of the aircraft, and the right-hand side represents the rate of change of

momentum or moment of momentum. The aero dynamic forces, the engine thrust and the

inertia forces provide the left-hand side. They depend on the distortion and displacement

of the whole aircraft relative to the direction of flight under the action of the controls.

The force-moment equations written so far describe the gross movement of the aircraft

and they are referred to the motion of the C-G of the aircraft. However, for the design
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of an aircraft we need to determine the distribution of the aerodynamic forces (in the

form of lift forces) on the external surfaces. For example we need to know the chordwise

and spanwise distribution of the aerodynamic forces on the liftiag surfaces like the wing,

horizontal stabilizer and the fin.

The pressure distribution on the lifting surfaces can be expressed as

P=AW (12)

where P is the resultant pressure on each panel. It is assumed that the lifting surface is

divided into a number of panels. The sides of the panel are assumed to be parallel to the

free stream (See Figure 3) and the pressure is assumed to be constant over each panel.

A is the aerodynamic influence coefficient matrix the elements of which can be calculated

by aerodynamic theories such as vortex-lattice or doublet lattice for the subsonic cases

and supersonic distribution or mach box theory for the supersonic cases. The matrix W

represents the downwash distributions which generally consist of rigid surface inclinations

to the free stream and deflections of the control surfaces. The rigid surface inclinations

include the effective angle of attack of the surface, local incremental angles of attack due

to camber and twist and additive corrections to the local incidences. The effective angle of

attack equals the sum of the geometric angle of attack of the wing relative to the fuselage,

the inclination of the fuselage, and the upwash induced by this inclination.

Mass Properties: Inertia Loads

In addition to the aerodynamic forces, each maneuver is associated with inertia loads.

These inertia loads are either due to gravity or any maneuver involving acceleration of

the aircraft. To calculate the inertia loads we need to know, at least approximately, the
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mass properties of the aircraft. The total mass of the aircraft. is made up of structural

and non-structural parts. The analytical models can only estimate the structural mass

of the aircraft. The non-structural mass properties are generally estimated from the past

experience of similar aircraft. These estimates have to be continuously revised as the

detailed design of the aircraft evolves. Once the mass properties are known the inertia

forces can be estimated by application of Newton's second law of motion.

Aerodynamic Surfaces - Structural Boxes

In most aircraft lifting surfaces the structural box is only a fraction of the total and

the rest of it is made up of control surfaces and surfaces to enhance the lift area. The

structural boxes are generally approximated by finite element grids, while the entire lifting

surface is divided into aerodynamic panels for the purpose of calculating the pressure

distributions. The total panel loads can be calculated and the center of pressure points

can be determined. However, these load points and the structural grids do not generally

coincide. For structural analysis these loads have to be transformed from the aerodynamic

grid to the structural grid. These transformations can be carried out by polynomial or

spline interpolations. A similar situation arises when we are considering aeroelastic effects

(flexibility effects) on the airload distribution. Here the structural box deformations have

to be extrapolated to obtain the correct angle of attack. The same polynomial or spline

extrapolation can be used.

Ground Loads

The ground loads are a result of three distinct conditions:

(i) Taxying
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(ii) Take-off

(iii) Landing

The runway profile and the time spent taxying at different speeds are the important

factors contributing to the taxy loads. The discrete bumps or chuck holes can significantly

increase the taxy loads. The aircraft flexibility also significantly effects Jhis 'Dad.

In most cases the take-off may be considered an extension of the taxying condition.

The conditions governing the landing loads are distinctly different from any of the other

two. The attitude of the aircraft and the resulting ground loads can be fully defined if the

following parameters are known:

(i) Vertical Velocity at Touch Down

(ii) Horizontal Velocity

(iii) Bank Angle

(iv) Rolling Angular Velocity

(v) Yaw Angle

(vi) Yawing Angular Velocity

(vii) Pitch Angle

(viii) Pitching Angular Velocity

The actual distribution of the ground loads to various components of the aircraft cannot

be quite precise but empirical estimates would be adequate.

Material Properties - Strengt

In order to correctly define the strength constraints (strength margins of safety) we

must clearly understand the material properties of the structure. The material strength

in the allowable properties of the material are based on these factors:
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* Allowable stresses based on yield or ultimate strength.

* Allowable stresses based on local buckling or crippling.

* Allowable properties based on durability and damage tolerance.

The yield or ultimate strength of the material is simply a metallurgical property, and

they are determined by simple tensile (or compression) coupon (uniaxial) tests or torsion

beam tests.

The local buckling or crippling strength depends on the material property as well as the

geometry of construction of the structural elements. Simple example are column buckling,

local panel buckling, stiffener buckling, beam buckling, etc.

The durability and damage tolerance considerations are much more involved. Fatigue

life and fracture mechanics considerations are of extreme importance in aircraft design.

In defining strength constraints we must take full cognizance of the fatigue and fracture

properties of the materials.

Allowable Stresses Based on Yield/Ultimate Strength

The material allowable strength is generally determined from uniaxial coupon or torsion

beam tests. In a uniaxial state of stress the stress in the element can be limited to its

tension or compression allowable. Usually the allowable stress is specified as some fraction

of the tensile or compressive yield strength. This fraction depends on the desired factor of

safety. In some materials the stress allowable may not be the way to specify the material

constraint. In such cases the strain allowable may be more appropriate. Similarly in

13



the case of elements predominately subjected to shear, an allowable shear stress can be

specified.

Most structural elements are (in particular, surface elements) in a biaxial state of

stress. In such cases a failure theory has to be invoked to specify a stress constraint based

on material strength. The most commonly used failure theories for metals in a biaxial

state of stress are:

1. Energy of Distortion or Von Mises Criterion.

2. Tresca's Shear Stress Criteria.

Both theories give comparable results and for our present discussion we will adopt the

energy of distortion theory. In most general terms the modified energy of distortion theory

can be stated as follows:

'(c) 2 u 2 (3

XY + Y T_ 1 (13)

where a2 , cy, azy represent the actual stress state in the element's local reference axis.

X, Y and Z are the allowable stresses in the respective directions. The tension and

compression allowables can be different, in which case there are five allowable stresses for

each material. For some materials uniaxial strain allowables may be more appropriate.

For the case of solid elements in a state of three dimensional stress, an octahedral shear

stress criteria would be more appropriate. However, three dimensional elements are not

relevant for the present discussion of optimization.

In many aircraft specifications the stress constraints in the elements are specified in

terms of margins of safety (MS) which can be defined as

MS = 1 - ESR (14)
ESR
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where ESR, th- effective stress-ratio, is defined as

Generally a specified positive margin of safety (MS) is required in most aircraft design.

Allowable Stresses Based on Local Buckling

Most aircraft elements are light and flimsy because of the overriding requirements

of structural weight reduction to increase the payload and reduce the fuel consumption.

Local buckling is a potential failure mode and it can occur SubstaiiLially below the ma-

terial strength. In such cases the allowable stresses for the elements must be determined

by buckling considerations. These buckling stresses can be calculated by the following

formulas:

Column Buckling

Ocr = k E (16)

(L/r)2

Plate Buckling in Simple Compression or Shear

E
Ocr = kp 1bE) (17)
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Beam Buckling: Lateral Torsional Buckling

E
acr = 

(1)

where kc, kP and kB represent the buckling constants which are functions of the element

boundary conditions and loading. E is the modulus of elasticity of the material. The

quantities (L/l), ('bt) and (Ld/bt) represent the slenderness ratios of the elements. Since

the present optimization discussion is limited to elastic cases, we will not address bucking

in the inelastic region.

Allowable Properties Based on durability and/or Damage Tolerance

Fatigue and fracture mechanics are the driving factors in this case. Every structural

component is subjected to cyclic loads in service, and the fatigue properties of the design

must be evaluated for adequacy. In the context of optimization the stress constraints

definition must take full cognizance of the fatigue life requirements. The cyclic load on a

structural component can be described by two of the six terms relating to the stress cycle.

Smaz = Maximum Stress

Sm .. = Minimum Stress

Smaz + Smn,,
S, = Mean Stress - 2

2
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Sa = Stress Amplitude = Sma - "mtn
2

Sr = Stress Range

SminR = Stress Ratio = Smo

The value of the stress ratio for the fully reversed stress cycle is -1, and most S-N

curves for metals are given for this case.

To assess whether or not the nominal cyclic stress state will result in failure in a given

number of cycles, the stress state is compared to the three criteria of failure:

1. Crack Initiation

2. Crack Propagation

3. Gross Yielding

If the stress state in question is equal to or greater than the allowable stress for crack

initiation, a fativue crack will develop in a relatively few cycles. If the stress state is equal

to or greater than the allowable stress for crack propagation, any crack already present or

which develops because the crack initiation criterion has been exceeded, will propagate to

failure in less than the desired life. The gross-yield criteria postulates that if a nominal

stress state is equal to or greater than the yield strength of the material, that stress state

should be considered unsafe for long life applications.

The crack initiation for a uniaxial state of stress can be written as
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m SN
Sa + -Sm > (19)

where

SN = Axially loaded fatigue strength at the desired life.

m = Influence of the mean stress on the allowable alternating stress.

Kf = Fatigue Notch Factor.

The modifying factor m depends on the material. A value of m = 0.5 is reasonable for

most metals. The actual value for an aluminum alloy is m = 0.425. An accurate value of

m may be determined from experimental data.

The criteria for crack propagation is based on the alternating tensile stress. Fatigue

cracks will propagate if the alternating tensile stress is equal to or greater than the critical

alternating tensile stress for propagation:

Sta > SP

where St. is given by

Sta = (Smax tensile - Smin tensile)/2

Sp, = Critical alternating tensile stress to propagate a crack.
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The yield criterion states

S.+Sm >Sul

where S, = uniaxial tensile yield strength

In summary, then, in order to use the three criteria of failure to assess a given nominal

stress condition, the following information must be known:

1. Fully reversed, axially loaded fatigue limit or fatigue strength for the desired number

of cycles, SN.

2. Coefficient of the influence of the mean stress on the allowable alternating stress, m.

3. Critical alternating tensile stress to propagate a crack, S .

4. Uniaxial tensile yield strength, Sys.

5. Fatigue Notch Factor, Kf, for fully reversed loading without residual stress.

6. Residual Stress State.

Additional information can be obtained from constant life fatigue diagrams or Good-

man diagrams. Some examples are given in Figure 10.

Fracture Mechanics Considerations:

The damage tolerance properties of the structural elements must be determined from

fracture mechanics considerations. Most built up structures will have flaws either at the

joints or even at the interior of the elements due to improper finish of the components.

These flaws can precipitate below the yield strength failures. In defining stress constraints

23
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one should be cognizant of fracture considerations. The fracture mechanics considerations

are supposed to answer the following questions:

a) What is the residual strength as a function of the crack size?

b) What size crack can be tolerated at the expected service load, i.e. what is the critical
crack size?

c) How long does it take for a crack to grow from a certain initial size to the critical size?

d) What size of pre-existing flaws can be permitted at the moment the structure starts
its service life?

e) How often should the structure be inspected for cracks?

For our purpose we will briefly discuss the concepts of stress intensity factor and

fracture toughness properties. Consider a plate with an elliptical hole

a-2 a -G
max

2 b

Fig. 11 Plate with an Elliptical Hole
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Fig 13: Finite-Width Plate Containing a Through-Thickness Crack
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Fig 14: K I Values for Various Crack Geometries
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2aOmaz = Urn (1 + -b)

When b = a, i.e. a circular hole, om = 3a. When b < a, Cm becomes very large. It is

in the limiting case a crack in the plate.

The basic premise of fracture mechanics is the recognition that the actual stress in the

structural elements is significantly higher than the nominal stresses calculated by internal

loads analysis which did not account for the presence of cracks or flaws. These cracks or

flaws were, of course, unintended, but they are introduced by the fabrication of built-up

structures. The stress distribution in the vicinity of the crack is generally much higher,

and the designer must make sure that they are the sources of failure of the structure. The

stresses around and in the vicinity of a crack can best be described by the stress-intensity

factors KI, KII and KiII. The subscripts I, II and III refer to the three modes of cracks

as shown in Figure 12.

Among these the mode I crack is the one we shall concentrate on. However, the same

ideas can be extended to the other two modes of cracks. The mode I crack plays an

important role in the design of aircraft elements. The stress-intensity factor KI can be

expressed as a function of the applied nominal stress and the crack length in the case of a

through the thickness crack in an infinite plate.

KI = UVf-r-a (20)

where a is the nominal stress and a is the semicrack length. If K, is known, then the

stress-distribution in the vicinity of a crack can be expressed by:

or 2 / cos 1l- sin - sin- (21)
(27rr)1/2 22
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K cos I 1 + sin a sin -- (22)

(27rr) 1/2 2 I T

K .0 
0 30

zy - n jc s cos 
(23)

cz = 0 (Plane Stress) rT, = Tyz = 0 (24)

a,= V(ou + o.) Plane Strain (25)

,' I -q Yoj

Line Crock r

7 / ,/- Crack Tip Region

Fig 15: Stress Element Near Crack Tip
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Fig 16: Coordinate System and Stress Components Ahead of a Crack Tip
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The exact stress distribution around a crack is not of as much importance to the designer as

that of the question of whether this crack precipitates failure (propagates) of the structural

element. This concern for failure relates the concepts of critical crack length, critical

nominal stress and critical stress intensity factor or fracture toughness of the material.

K = =ocv (26)

The critical stress-intensity factor, KIC, which is also referred to as fracture toughness, is

a material property and can be determined by standard material tests. Conceptually this

procedure is quite simple. Subject a plate with a known crack length and load to failure

fracture and determine ac for that crack length. Repeat the test with different crack sizes

and determine the failure stress.

By repeating this procedure the quantity axia, a material constant, can be estab-

lished and from this, one can determine the fracture toughness (critical stress-intensity

factor KIC).

Kc = 50ksi i. 7= v/oav'a

Using this equation, values of the critical crack size for various stress levels are

calculated as follows:

u(ksi) a(in.)

10 7.96
20 1.99
30 0.88
40 0.50
50 0.32
60 0.22
70 0.16
80 0.12
90 0.10

100 0.08
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The allowable stress levels from fracture considerations can be determined by the

allowable crack lengths or vice versa when the fracture toughness of the material is known.

A more general expression for the stress-intensity factor can be written as

KI =a vf-ra ( a(27)

The quantity f (i) accounts for the finite dimensions of the plate. The rate of fatigue

crack propagation per cycle can be related to the stress intensity factor as follows:

da
dN - f(R, AK) (28)

R - Kmt. - Smin AK = Kmaz - Kmin (29)

Kmaz - Sma.

The left hand side of the equation represents the rate of fatigue crack propagation per

cycle.
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ABSTRACT

This paper presents a generalization of what is frequently referred to in the literature as

the optimality criteria approach in structural optimization. This generalization includes

a unified presentation of the optmality conditions, the Lagrangian multipliers, and the

resizing and scaling algorithms in terms of the sensitivity derivatives of the constraint and

objective functions. The by-product of this generalization is the derivation of a set of

simple nondimensional parameters which provides significant insight into the behavior of
the structure as well as the optimization algorithm. A number of important issues, such

as, active and passive variables, constraints and three types of linking are discussed in the
context of the present derivation of the optimality criteria approach. The formulation as

presented in this paper brings multidisciplinary optimization within the purview of this

extremely efficient optimality criteria approach.

INTRODUCTION

In recent years, interest in the multidisciplinary optimization of aerospace structures

has been widespread. At present there are many large scale software systems under devel-
opment both in the U.S. and overseas. Some examples of these are: "ASTROS" [Johnson,

Herendeen and Venkayya (1984)] (Automated Structural Optimization System being de-
veloped for the Air Force Wright Aeronautical Laboratories), "LAGRANGE" [Mikolaj

(1987)] (developed by MBB in Germany), "ELFINI" [Petiau and Lecina] (Avions Mar-

cel Dassault in France) and "STAR" [Scion Ltd (1984)] (Royal Aircraft Establishment in
UK). A number of other systems are in development around the world. Earlier computer

programs like "OPTSTAT" [Venkayya and Tischler (1979)], "ASOP" [Dwyer, Emerton

and Ojalvo (1971)], "FASTOP" [Wilkinson, Markowitz, Lerner, George and Batill (1977)],

"TSO" [Lynch, Rogers, Braymen and Hertz], "ACCESS" ]Schmit and Miura (1976)], etc.

have preceded these modern systems, and they have established the feasibility of inte-

grating optimization into structural design. Developers of "MSC NASTRAN" [MacNeal

(1971)], -ANSYS" [DeSalvo and Swanson (1985)] and others are actively attempting to

incorporate optimization into their systems.
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Most of these systems are intended for the preliminary design of aerospace structures

using finite element models. The distinguishing feature of these preliminary design systems

is that the predicted performance parameters, such as, strength, stiffness, flutter and other

aeroelastic parameters, are realizable within a small percentage error. Some of the common

disciplines of the integrated design systems are structures, aerodynamics, aeroelasticity,

sensitivity analysis and optimization. The next logical step in integration is to include

aircraft and spacecraft controls as well.

One of the most challenging problems in structural optimization with finite element

models is the ability to handle large order systems with numerous design variables and

constraints. The order of the system is defined by the number of degrees of freedom in

the analysis. As the order of the system increases, both the response and the sensitivity

analysis require excessive computer resources. Since optimization requires several analysis

iterations, it is essential that analysis and optimization algorithms be made numerically

efficient. Several order reduction and variable linking schemes are available to cope with

this computational burden. However, order reduction schemes introduce uncertainty in the

accuracy of the analysis. Similarly, variable linking schemes overconstrain the optimization

problem. Errors of analysis can propagate, since optimization algorithms are, in general,

iterative approaches. Overconstrained optimization problems can only give upper or lower

bound solutions depending on the minimization or the maximization problem. Analysis

and optimization algorithms that do not depend on order and variable reduction schemes

are preferable, if they can efficiently handle the numerical issues.

In a finite element model a structure (continuum) is represented by a large number

of discrete (finite) elements. Each element connects a set of grid points. In configuration

space each grid point can contribute up to six degrees-of-freedom, three translations and

three rotations, to the analysis set. The total number of degrees-of-freedom constitutes

the order of the system. The order of the system determines the analysis cost. Similarly,

each element of the finite element model contributes one or more (design) variables to the

optimization problem. The number of variables increases both the sensitivity analysis and

the optimization costs. Since structural design belongs to a class of nonlinear optimization

problems, more variables means increased difficulties in obtaining optimal solutions. The

limit on most nonlinear programming algorithms in use at the present time is around

100-200 variables. By linking the design variables, one can reduce the problem to a more

manageable size and can extend the capabilities of the optimization algorithm to handle

large scale systems. Linking is akin to order reduction and, as it was noted earlier, is

tantamount to adding more constraints to the system. Moreover, in a large scale system

it is not always easy to see the appropriate linking scheme.

In response to the need for the optimization of large practical structures, a discrete
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optimality criteria was proposed during the late sixties and early seventies [Venkayya, Khot

and Reddy (1969); Venkayya (1971); Venkayya, Khot and Berke (1973)]. This procedure

consisted of deriving the optimality conditions and then obtaining the iterative algorithm

from the same optimality conditions. This iterative algorithm, together with a scaling

procedure, was used to optimize a number of structures with stress, displacement and

frequency constraints [Venkayya, Khot and Reddy (1969); Venkayya (1971); Venkayya,

Khot and Berke (1973); Venkayya and Tischler ((1983); Grandhi and Venkayya (1987)].

However, the iterative algorithm, the scaling procedure and the Lagrangian multipliers for

multiple constraints were derived for each special condition. This approach is not very

conducive for optimization in a multidisciplinary setting. Moreover, since most of the

applications were in the context of membrane structures, an unintended consensus was

that the method is limited to such structures. The purpose of this paper is to generalize

this extremely efficient approach and to establish a mathematical basis in the context of

a nonlinear programming method. In addition, it is important to dispel the notion that

the optimality criteria method has only limited application. The topics to be addressed in

this comprehensive derivation are:

a. Optimality conditions

b. Lagrangian multipliers for multiple constraints

c. The iterative algorithm for resizing variables

d. Scaling

e. Active and passive variables

f. Active and passive constraints

g. Linking variables

Then the above conditions will be specialized for the following frequently discussed cases:

a. Displacement constraints - membrane structures

b. Displacement constraints - membrane-bending structures

c. Frequency constraints - membrane-bending structures

d. Stress constraints - membrane-bending structures

e. Scale factor and the nondimensional parameters

The most important topic in this optimality criteria approach is the concept of scaling,

and it will be discussed in some detail. The next two important topics are the iterative

algorithm together with the specialization of the Lagrangian multipliers All of these

concepts will be derived as a function of the sensitivity derivatives of the constraints and

the objective functions. Then this optimization will no longer be addressed in the context
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of a single discipline, but instead it will be derived in terms of sensitivity derivatives which

can be obtained for all disciplines.

Since sensitivity plays such an important role, it is worthwhile pointing out that there

are three different approaches to a sensitivity analysis [Venkayya (1985)]: (a) Taylor's

series approximation, (b) adjoint variable or virtual work and (c) finite difference. The

first and second approaches are generally efficient, and the finite difference approach is the
least efficient. However, the finite difference approach is conceptually the simplest, and it
can be used readily in any situation. Throughout this paper it will be assumed that the

sensitivity derivatives are available in all disciplines.

OPTIMALITY CONDITIONS

The constrained optimization problem can be stated as follows:

Minimize or maximize the performance function

W = W(x 1 X 2 ... X(1)

Subject to the constraints

Inequalities

Z,(X1 x 2 ... X.) 5Zj j = 1,2,...,k (2)

Equalities

Z,(Xr x2 ... Xm) = Zj j = k +1,..., (3)

In addition there are constraints on the variables themselves, and they are defined as

> =X (4)

or a subset of x are assigned fixed values. Functions W (objective or performance) and Z

(constraints) are functions of m variables (xIx 2 - - - xm), and they will be referred to as

design variables or simply variables in the optimization.

The concept of active and passive constraints is defined as follows: a constraint is active

if the analysis of the system for a given variable vector shows that Zj = Zj. Otherwise the
constraint is considered passive at least in that design. Similarly, a variable is considered

active if it is between the bounds defined in Eq 4 and if it was not assigned a fixed value.

All other variables are passive.

The constrained optimization problem corresponding to active constraints can be re-

formulated with a Lagrangian function L as

L(,, = w(z) - Aj(Zj - (5)
j=1
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where the A's are the Lagrangian multipliers corresponding to the active constraints. The
stationary condition of the Lagrangian function also corresponds to the stationary condi-

tion of W
OL OW P az3j  -- 0 i = 1, 2,..., m (6)

In the above equation all m variables are assumed to be active, and also there are p active

constraints. The set of m equations represented by Eq 6 can be written as

LeijAj= i 2,...,m (7)
3=1

where eij is the ratio of the sensitivity derivatives of the constraints and the objective

function and is given by
az.

71 (8)eij = aw()

This quantity, eij, henceforth will be referred to as the ratio of energy density to weight

density or equivalent in the element.

Eqs 7 represent the necessary conditions of optimality, and they are also referred to as
Kuhn-Tucker conditions in nonlinear programming. Eqs 7 in matrix form can be written

as

eA= (9)

where e is an m x p, a p x 1 and 1 a m x 1 matrix. Premultiplying both sides of Eq 9

by etA gives

etAeA = et141 = (10)

where the weighting matrix A is an m x m diagonal matrix. The elements of A will be

selected such that the elements of Z will represent some energy or equivalent in the system.

One of the important requirements of A is that it be positive definite. It should also be

noted that an interesting generalization of the optimality criterion can be derived from the

selection of an appropriate A. The implication being that through the weighting matrix A
the method can be extended beyond structural optimization. In structural optimization

problems the elements of the diagonal matrix A are assumed to be the weights of the
individual structural elements. Then the elements Z3 are given by

SM

m

= eijAi, j = 1,2,...,p (11)
t=1

As stated previously the number p corresponds to the active set of constraints. Now Eq

10 can be written as

HA= Z (12)
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Eqs 12 are a nonliiuear set of equations. Since the elements of H are functions of the

primary variables x, which are themselves unknown, the solution of Eqs 12 for unknown

A's can be determined by Newton-Raphson or other approximate methods. These iterative

methods converge only if the starting solution is close to the actual solution. Also in the

absence of a unique solution for the A's it would be difficult to select a reasonable initial

solution. To avoid these difficulties a simpler, but an approximate method, was proposed

in 1973 [Venkayya, Khot and Berke (1973)].

LAGRANGIAN MULTIPLIERS FOR MULTIPLE CONSTRAINTS

The method for estimating the Lagrangian multipliers is based on a very simple con-

cept. They are determined by invoking the condition of a single active constraint. Then

the resulting A's are used as weighting parameters in a multiconstraint problem. Since

these parameters will be updated in each cycle of the iteration, this method works as well

as any other approximate method. Basically, this assumption implies that the H in Eq 12

is strongly diagonal. This may not be true, but should not deter the use of a single con-

straint approximation. Approximations cannot be avoided in any method of determining

the Lagrangian multipliers because of the nonlinearities. Another advantage of this ap-

proach is that by monitoring the Lagrangian multipliers, one can well assess the behavior

of the constraints and predict how the design progresses to the optimum. This ability to

predict behavior is essential in order to eliminate significant anomalies and uncertainties.

For a single constraint case the m equations of optimality can be written as

e1A=1 e2A=I ... emA=1 (13)

It is evident from Eqs 13 that this condition at the optimum can only be true when

el e2 = em=e (14)

and 1 - - (15)
e

Now Eq 10 can be written as
eIA)=2 (16)

If a quantity W is defined as

W = 1lA1 (17)

then from Eq 16 e becomes

e - (18)

or

A (19)
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For multiple constraints the approximation is

W (20)
Z3

The meaning of the parameter W depends on what is selected for the weighting matrix

A. For example, in structural weight minimization problems the weight of each element

in the finite element model can be selected as the diagonal elements of A. In that case W

is simply the total weight of the structure, and Z is the imposed constraint or a function

of it. However, one should be cautioned that Eq 20 is not limited to weight minimization

problems, because nowhere in its derivation was this requirement invoked.

ITERATIVE ALGORITHM (RESIZING ALGORITHM)

The optimality condition as defined by Eq 7 states that at the optimum the weighted

sum of the energy density (or equivalent) to the weight density ratio corresponding to

the active constraints must be the same in all the finite elements in the structure. The

weighting parameters are the Lagrangian multipliers. Now the iterative algorithm can be

derived by multiplying both sides of Eq 7 by x9

X-= X L? eijA, (21)
Eq 21 can also be written as

Xi X eiAi] (22)

Then the resizing formula can be written as

V+l= L eijAj (23)

where a is defined as a step size parameter. A large value of a represents a smaller step

size and vice-versa. For most problems a = 2 represents a reasonable step size, because it

assures a reasonable rate of convergence. However, as the design approaches the optimum,

there is an increasing possibility of constraint switching and other anomalies which can

disturb a smooth convergence. When such conditions are encountered, the value of a can

be increased to reduce the step size and capture the optimum design. In fact, by monitoring

the single constraint approximation of the Lagrangian multipliers, one can easily predict

when the value of a needs to be increased from 2. For most problems an a value of 2 is

ideal for the first 80 to 90% of the iterations. Any increase in the a value is necessary (not

always) only in the last 10 to 20% of the iterations. In these instances a change over to an

a value of 3 or 4 is adequate. In summary, it should be pointed out that a larger value of
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a increases the number of iterations but provides a smoother convergence. By the same

token small values of a(s 1) speed up the iteration but can miss the optimum because of

constraint switching or other anomalies.

The iterative algorithm, as defined by Eq 23, is distinctly different from the standard

nonlinear programming algorithms which define
V+= Z + lD' (24)

- S tD:

where a represents the step size and D represents the direction of travel. Both a and D

are generally constructed from the sensitivity derivatives, e, as in the optimality criteria

approach.

The difference in philosophy of the two resizing approaches represented by Eqs 23 and

24 is quite significant and can be explained with the help of the two variable design space

in Fig. 1. In the nonlinear programming approach, Eq 24, the search is from point to point

in the design space. The computational effort and the number of cycles of iteration become

very large when the number of variables increases. This observation is a result of over 30

years of experience reported in the literature. If the number of variables exceeds 100-200,

these algorithms can hardly give reasonable solutions. The search, as represented by Eq

23 on the other hand, sweeps through the design space as indicated in Fig. 1 and tends to

be insensitive to the number of design variables. The resizing procedure, as defined in Eq

23, together with the scaling procedure to be outlined in the next section are described as

the optimality criteria approach in structural design.

SCALING PROCEDURE

The scaling procedure can be explained with the help of two designs as represented by

the two variable vectors x and t. Now the relationship between the two variable vectors

is given by

= Ax (25)

where A is a single scalar parameter which will be referred to as a scale factor. (A > 0). If

dx is the difference vector between the two designs, then one can write

dx= x (A - 1); (26)

Also if R and 1? are the response quantities respectively in the two designs, then a change

in response can be represented by

dR R-R (27)

Now from the definition of the total differential (first order approximation of the Taylor's

Series) the following relationship can be written

dR = Rd + d + + OR (28)
d xR d X 2 X.dm

42



Then dR can also be written as (from Eqs 26 and 28)

dR = (A- 1) Z RXi (29)
t= ,(

Then E'MI OR x

dR= (A - _1) -R_ i (30)
RR

An examination of Eq 30 presents two interesting cases.

CASE 1: Era= OR
R' < 0 (31)R

In this case a new parameter j. is defined as
ET OR

= z~i Xt- - R (32)

Then Eq 30 can be written as
dRR - (1 - A)y (33)

Now the scale factor A can be written as

dR 1A 1 - -= (34)

where
I dRb-b 4 (35)

Eq 34 can also be written as
1 _ 1
A- -i b (36)

by neglecting the higher order terms of b in a binomial expansion. Now dR/R can be

written as
dR (37)

Adding 1 to both sides of Eqs 37 one can write

R+dR p
R - X t+1 (38)

A new parameter, 3, which will be referred to as the target response ratio, is defined as

New Response (R) = Target Response Ratio (39)
Initial Response (R) -

Then

1 (40)

Solving for the scale factor A

A 3 (41)
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CASE 2:
R > 0 

(42)
R

Now the parmcter w is defined as

R (43)

Then the scale factor A can be written as

A 03K+ 9-1 (44)

An examination of Eqs 41 and 44 reveals some interesting facts:

1. In CASE 1 the scale factor is inversely proportional to the target response ratio, and

in CASE 2 it is directly proportional to /.

2. The response of the system, R, and the response sensitivity, OR/ax, can be determined

from an analysis of the system for a given variable vector x. The target response (or

desired response) can be determined from the constraint definition. Then the target

response ratio, ft, and the parameter, A, are known. Then the scale factor A can be

determined explicitly for any type of structure and constraints.

3. Both / and A are non-dimensional parameters, and their range can be estimated quite

well for a given structure and constraints. For example, if the desired (target) response

is 20% greater than the original response, then /# would be 1.2. For displacement

constraints in membrane structures p = 1, and Eq 41 becomes

1
A - (45)

This means that the scale factor is inversely proportional to the target response ratio.

The relationship described in Eq 45 is exact. The following sections will discuss additional

details.

ACTIVE AND PASSIVE VARIABLES

The definition of active and passive variables was given in Section 2 as part of the

formulation of the optimization problem. All those variables that are free to participate

in the optimization are called active variables. The variables on that part of the structure

that are not allowed to change and those beyond the range defined by the side constraints,

Eq 4, are the passive variables. There is always the question of why these passive variables

should be treated at variables at all, if they do not participate in the optimization. Even

though these variables are not changing in absolute terms, they are changing relative to

the active variables. This relative change does effect the response and the sensitivity of

the structure.
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The effect of the distinction between the active and passive variables on the optimiza-

tion problem formulation and solution is explained by citing specific equations. (a) For

example, the optimality condition as defined by Eqs 7 or 9 is not affected by this distinc-

tion. In other words even though the active ,ariables are only a subset of the m variables,

they all participate in the optimality condition. The energy density or equivalent as de-

fined by Eq 8 remains the same. (b) The Lagrangian multipliers as defined by Eqs 12 or

20 are also uneffected. (c) The resizing algorithm, as defined by Eq 23, applies only to the

active variables which means the passive variables are not resized. (d) In determining the

scale factor A by Eqs 41 or 44, only the active variables are included in the summation.

The parameter it, as defined by Eqs 32 or 43, includes only the active variables in the

summation also.

ACTIVE AND PASSIVE CONSTRAINTS

The concept of active and passi-c constraints was the most obvious and simplest con-

cept when it was proposed [Venkayya, Khot and Reddy (1969); Venkayya (1971); Venkayya,

Khot and Berke (1973)]. This concept led to the constraint deletion techniques in the struc-

tural applications of nonlinear programming algorithms. The way this concept is used in

the optimality criteria is explained here for further clarification.

The target response ratio as defined in Eq 39 is invoked here for this explanation.

The target response ratio is the ratio of the imposed constraint value to the value of the

constraint determined in the analysis. In each iteration (analysis) the target response ratios

can be determined (a trivial task) for all the constraints. An array of 0a is generated in

this process (,3 > 0). Now the active constraints can be defined as

Active Constraints = p = PE + PI

where PE represents all the equality constraints (Eq 3) and P1 represents the constraint set

derived from the inequalities (Eq 2). All the constraints with the lowest value of 0 (the

greatest value in the case of inequalities expreseed as >) and its vicinity contribute to the

set pl. This constraint set can change (need not be the same) in each iteration.

The criticism that the active constraint set at the optimum must be known in advance

in order to apply the optimality criteria approach is not true. The active constraint set is

defined just for that iteration, and the algorithm itself eventually drives the design to the

active constraint set at the optimum.
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LINKING VARIABLES

A - discussed in the introduction, linking of variables is often used to reduce the order of

the design space. This is acceptable as long as it is recognized that linking is tantamount to

adding additional constraints which can affect the optimum solution. However, linking of

variables can be very effective in practical designs, if it is done after a thorough examination

of unlinked designs. By comparing the linked and unlinked designs, one can assess the price

of linking. Sometimes the performance demands of modern aerospace systems and the

recent developments in computer controlled manufacturing processes may accommodate

the unlinked designs or reduce the linking to a minimum.

There are three types of linking and all of them have a similar effect on the optimization

algorithm.

a. The simplest case of linking is to assign a single variable to a group of elements.

This means that all the elements in that group will have the same variable value.

b. Linking by polynomial variation is another option. This involves the selection of

a group of elements based on (possibly) their spatial location and linking them

by linear, quadratic or cubic polynomials. The variabies in the polynomials are

parameters that determine the location. This concept was used very effectively

in programs like TSO [Lynch Rogers, Braymen and Hertz]. Since th. structure is

represented by a single trapezoidal flat surface in the TSO program, the meaning

of polynomial linking is quite simple and appealing. However, it can easily be

generalized to three dimensional finite element models as shown later in this section.

c. Shape function linking is essentially an extension of polynomial linking, but its

application becomes meaningful only to a more sophisticated user.

A more detailed discussion of linking in the context of the present optimality criteria

approach is presented here. Linking does not affect the optimality conditions or the ex-

pressions for the Lagrangian multipliers. It does not even affect the scaling. Here linking

is not used to reduce the size of the design space, as the dimensionality is not of much

consequence in the optimality criteria approach. It is essentially intended for the purpose

of tailoring optimum designs to manufacturing requirements and not for accommodating

algorithm limitations.
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The linking algorithm is introduced upfront as an independent operation in the opti-

mization as shown in the schematic diagram.

,-IT . LINKING :ANALYSIS

COMPLETIO F RESIZING ' SCALING]

Design Scheme With Linking

The basic linking algorithm is explained in the context of the general transformation

X= Tx (46)

where x is the m x 1 variable vector that goes into the analysis. The vector x is an

I x 1(I < m) reduced variable vector. This vector is a subset of the initial design the

first time, and then a subset of the vector conzing from the resizing algorithm. The

transformation matrix T is an m x t matrix. The three linking schemes discussed earlier

can be accommodated in the definition of the transformation matrix.

a. Assigning single variables to groups of elements:

The variable vector x is represented by t groups and each group contains one or

more variables. All the variables in each group have the same value. This value will

be the largest variable in that group coming from resizing. Thus the transformation

matrix in this case is given as

Tt 0 T' 0 (47)

where T 1 , T 2 and T3 are submatrices with dimensions corresponding to the number

of variables in each group. If the number of variables in the groups are the same,

then
Tt = T' - - T ' = [ 1.. (47)

b. Polynomial variation of the elements in each group:

The transformation matrix can be modified by simply replacing the ones by coef-

ficients of the poynomial. If it is a linear linking, it involves two variables, three in

the case of quadratic linking and so on. A shifting procedure as explained in the

shape function linking can select an effective subset from the resized variables.

c. Shape function linking involves a fully populated transformation matrix.

The following steps outline the iterative scheme for shape function linking.
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1. Select the number of groups, t.

2. Select an appropriate number of elements from the initial or resized vector in

descending order (±t is a subset of ±).

3. Substitute the variables selected in step 2 into the transformation equation and

determine the intermediate vector ±.

4. Shift the vector such that
= (48)

-t

where Ax is defined as follows:

CASE 1: Any (;j - Yi < 0 i = 1, 2,..., m

then Ax = max % - -ij from the set (=, - Y,) < 0 (49)

CASE 2:All (.i - Yi)_0 i =1, 2,..., m

then Ax = min ( -) (50)

5. Now replace xv -
V + l

6. Repeat steps 2 to 5 until
V+1= X (51)

The advantage of this linking procedure is that it leaves the remaining optimization

algorithm untouched.

SPECIALIZATION TO SPECIFIC DESIGN CONDITIONS

A number of issues related to optimization by an optimality criteria approach were

addressed in general terms using sensitivity derivatives. The purpose of this section is to

examine, in more detail, the implications when the method is applied to specific design

conditions. The fo!lowing design conditions are examined in the context of structural

weight minimization.

a. Displacement constraints - membrane structures
b. Displacement constraints - membrane- bending structures

c. Frequency constraints - membrane-bending structures

d. Stress constraints - membrane-bending structures

e. Scale factor and the nondimensional parameters
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The optimality conditions (Eqs 7 or 9), the expressions for the Lagrangian multipliers

(Eqs 12 and 20), and the resizing algorithm (Eq 23) are discussed briefly when applied

to these special design conditions. However, a more detailed examination of the scaling

procedure, in light of these special conditions, provides fascinating information on the

overall behavior of the structure in optimization.

a. Displacement Constraints - Membrane Structures

This specialization is addressed in the context of structural weight minimization. A

brief examination of the optimality conditions (Eqs 7 or 9), the Lagrangian multipliers

(Eq 20), the resizing algorithm (Eq 23), and the scale factor (Eqs 41 or 44) would provide

more tangible details.

In a finite element model the structural weight is defined as (the objective function W

in Eq 1)

W = pii, (52)
t=1

where W is a linear function of the variables xi. The product xzit is the volume of the

element, and pi is the weight density of the material. The applied load vector P and the

resulting displacement vector u are related by

P=Ku (53)

The displacement constraint Zj in Eq 2 can be written as

Z,= u,. = F.u (54)

where Fj. is the virtual load vector in which Fj = 1 for i = j and F = 0 when i : j. The

displacement u. is the active constraint. The quantity ei, in the optimality condition, Eqs
7 or 9 becomes [Venkayya, Khot, Berke (1973)].

ftu
eij = p-x'l)(55)

where f ) is the virtual displacement vector corresponding to the load vector F, and K§,

is the ith element stiffness matrix in the global coordinate system.

If the diagonal elements of the matrix A in Eq 10 are selected as the weight of the

structural elements in the finite element model, then one can write the relation

Z = Z (56)

and

iV = W (57)
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where Z is the constrained value of the displacement. Then the Lagrangian multiplier is

simply the ratio of the current weight of the structure and the constrained value of the

active displacement.
W

Aj = - (58)

W and 2 i are known and there is no need for special computations for Aj. With the above

definitions the resizing algorithm, Eq 23, does not need further clarification.

The scale factor as defined in Section 2 requires the parameter U which is defined as

+EI aR Xi

R

The response quantity, R, in this case is the displacement at a point that is active with

respect to the constraint definition.
R = uj- Ft.u (60)

Substitution of Eqs 53 and 60 in Eq 59 gives the expression for Iz as
ftKu

A=- 1 (61)
.U

where the virtual displacement vector f is given by the relation

F , = If!, (62)

Then the scale factor is simply (Eq. 41)

A 1 (63)

Eq 63 is the classic result (without approximations) for membrane structures with displace-

ment constraints. This equation simply says that the scale factor is inversely proportional

to the target response ratio.

b. Displacement Constraints - Membrane-Bending Structures

In a plane frame structure each element of the structure has two variables. These are

the cross-sectional area, xi, and the moment of inertia, I. They are never really completely

independent variables, because it may not be possible to build an element in such a case.

The most general relationship that can be assumed is

I, = d, x," (64)

where d, and n, are constants. Both d, and n, can be different for different elements. The

value of n, for most hollow box beams and I-beams can be approximated as

I < n, < 2 (65)
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For solid rectangular beams this value would be approximately

n, = 3 (66)

For all other sections n, < 3.

The quantity e,3 in the optimality condition takes the form

e,, f (K [IAi + nih Ji (67)
Pixili

where KA, and KB, are the element axial and bending stiffnesses in the global coordinate

system. The Lagrangian multipliers are given by

W
wG~ +Aj (68)

where the parameters IL are defined as

A = Ft. (69)

-3Yt=:1 -j ~~l- Bitl
ABj -='. (70)

The parameter A in the scale factor definition (Eqs 32 or 43) can be written as

= AAj + ABj (71)

The vectors Fj and f- are the virtual load and displacement vectors, respectively, as

defined earlier (Eqs 54 and 62). Then the scale factor becomes

AAj + ABj (72)

An examination of Eq 72 in the light of three special cases provides an interesting insight.

a. For truss or membrane structures

A = 1 /B, = 0 (73)

Then the scale factor is inversely proportional to the target response ratio as noted

earlier.

b. For membrane bending structures with n, = n = 1

i'A3 + PB3 = 1 (74)

Then again the scale factor (A) is inversely proportional to the target response

ratio (P)-
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c. For membrane-bending structures with ni > 1, the value of p can be described as

P'=IIAj+IBi I1 for n, > 1 (75)

However, the limits on A are 1 < IL < 3. Additional comments on the behavior of

the parameters I'Ay and JUBj and the optimization algorithm are given in the last

section. It should be noted that n, < 1 has little meaning in practical structures.

c. Frequency Constraints - Membrane-Bending Structures

The constraint in this case is w2 (w is the circular frequency) which means

Z = 2 (76)

The quantity eiy in the optimality condition becomes

= ,(f. Ai + nigBi)fk, 
- t

where KA, and KB, are the axial and bending stiffnesses of the ith element. Ms, is the

structural mass of the ith element. The Lagrangian multiplier becomes
W

A =. 
(78)

The scale factor in terms of the target response ratio can be written as

A - AAj + ABj - 1 + 'Yj (79)PzAi + ABj j ?1jr/

where 1Aj and ItBj are the axial and bending modal stiffness ratios, and they are defined
as

AAj t (80)

PABj - K (81)

The parameters -yI and r7j are the modal nonstructural and structural mass ratios respec-

tively ¢M'O
I __ -tM ¢-)(82)

3 ~ -3

52 i M -, (83)' ,Mo3
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where MA and M. are the structural and nonstructural mass matrices. The relationship

between ji, and -Yj is

?73 + -Y = 1 (84)

The target response ratio / is defined as

2 (85)
w30

where wjan and w30 are the new and the initial circular frequencies respectively. The

subscript j refers to the mode shape number.

An examination of Eqs 77 to 81 reveals a number of interesting facts:

1. For structures with only membrane elements

AAj = 1 IBj = 0 (86)

Then the scale factor can be written as

A- 3(87)1 -

This is the same result that was derived in 1983 [Venkayya and Tischler (]983)].

2. For structures with membrane bending elements such that

n, = n = 1 (88)

the parameters AtAj and JBI satisfy the relation

Aj + i/ BI = 1 (89)

Then the scale factor relation is once again the same as that given in Eq 87.

3. For structures with membrane-bending elements that satisfy Eq 64 but the jth

mode shape predominantly excites only the axial stiffness, then

A A; ::-- 1 ABj = 0 (90)

The behavior reverts to case 1.

4. If the mode shape predominantly excites the bending stiffness only and also Eq 88

is satisfied, then
AA1 - 0 I#BJ (g91)

Again the scale factor equation is the same as Eq 87.
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5. For structures with membrane-bending elements but ni is bound by

1 n< 3 (92)

then the p parameter limits can be written as

IAj + ABj !< 3 (93)

ni values beyond the limits defined in Eq 92 have no meaning in terms of a physical

structure, and the A parameter has a maximum limit of 3. Then the limiting

relationships for the scale factor are Eq 87 and

2 + j)
A =- (94)

3 -

6. The effect of the parameter /#/j are such that its limits are

0 2 < 7i < 1 (95)

for Eq 87 and

0 < fj < 3 (96)

for Eq 94.

Values of #3i2j beyond the limits specified by Eqs 95 and 96 have no meaning.

For low values of # qj the scale factor predictions will be very good. As the parameter

reaches the upper bound, the scale factor predictions deteriorate, not because of the ap-

proximations involved, but due to the inherent illconditioning in the problem (See Eqs 87

and 94). It is safe to say that if /3,2n. > 2/3 in Eq 95 and > 2 in Eq 96, then the scaling has

to be done in two steps (by reducing the value of 3) which means an additional analysis

in the cycle. The physical meaning of these statements can be explained by examining the

two extreme cases:

a. The structural mass is very small compared to the nonstructural mass

?7j < 1 Or jn--O (Y = 1) (97)

Then O r/j :-- 0 and the scale factor is directly proportional to the target response

rato 0. Predictions are extremely good.

b. The structural mass is dominant and there is no significant nonstructural mass

17 = I Yj. = 9 (98)
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In such a case, for the scale factor solution to be non-trivial, the denominator must

be equal to zero.
=1 (99)

If Eq 99 is true, ticii JP - 1, because Yvj is already assumed to bC one, which

means no scaling is possible when the nonstructural mass is zero. In real aerospace

structures the structural mass contribution seldom exceeds 20 to 30%. So it is not

difficult to limit the values of /ri < 2/3 in Eq 87 and 2 in Eq 94 and avoid a

second analysis for scaling.

In summary, it must be stated that by monitoring the parameters 'Aj, JBj, and 7j or

(-j), one can predict the behavior of the iterative optimization algorithm extremely well

and avoid any aberrations.

d. Stress-Constraints - Membrane-Bending Structures

Once again the relationship between x and I is assumed to be

I, = dix'i (100)

Now the stress in a given member is written as

aj= Tt.Sy- (101)

where the vector Tj is defined as

___ 0 S 0 0 0 ENDA (102)

[ sGNv SG Ni
0 0 0 SG 0 IN ENDB (103)

The notation SGN represents the sign of the elements of the element force vector, Si. The

parameter h(xj) is defined as (Section Modulus)

h(xj) - ii (104)

where c. is the exteme fiber distance at which the stress is of maximum magnitude. The
element force matrix S, can be written as

S5, kjq (105)

The expression for ca can be written as

=FtU (106)
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where the virtual load vector Ft. is given by

F' = Ttk)-aJ (107)

The e,, (Eq 8) in the optimality condition is given by

,j [Tt._$j - .--4 Sj-]- ft[ KA, + nK. Bl.it
--.7 - +(108)

where the new matrices Ty and Si are defined as

aTt.
- xj (109)

Y = ( Aj + n-/Bj)aY- (110)

The lower case k represents the element stiffness matrix in the local coordinate system.

The vector f is defined in Eq 62 with the virtual load vector defined by Eq 107. 6,y is the

Kronecker delta.

Now the Lagrangian multiplier is given by
W

Aj - Z(JLA, + -B, - ,y) (111)

The parameters ISAj and ABj are defined as before, Eqs 69 and 70, and the virtual load

vector is defined by Eq 107. The gj parameter is defined as

!t- ---4s
TPj= - s (112)

For membrane structures pj = 0, PBj = 0 and ItAj - 1. For nj = n = 1, Aj would be

nearly zero also.

The scale factor for stress constraints can be derived from Eq 30 with

R = a: =Ftu (113)

Then Eq 30 can be written as

da- (A 1) E - I X; (114)

a3  a3

After substituting Eqs 100 to 107 in 114 one can write

da. = (1 - A)(MA, + ABj- Y)) (115)

a
i
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The scale factor A can be written as

dc
A =1 .-- = I- b (116)

where

A AAj + -B - (117)

b -Cj < 1(118)

Now once again following the derivations of Eqs 35 to 41, the scale factor can be written

as

A Aj + ABj -- (119)

The nondimensional parameters g provide valuable information on the behavior of

the structure. Eq 119 is similar to the equations derived earlier for the displacement and

frequency constraints.

The stress constraint case is one of the most interesting, and it is worth an examination

from the algorithm implementation point of view. The optimality condition (Eq 7) states

that under ideal conditions the weighted sum of the energy density (or equivalent) to

weight density ratio should be the same in all the structural elements. Under very special

conditons this optimality condition leads to the celebrated fully stressed design concept.

The special conditions are:

a. All the elements of the structure are made of the same isotropic material.

b. The elements all have the same stress allowables, and also they are the same in

tension 'nd compression.

c. The side constraints (Eq 4) do not interfere with the fulfillment of the optimality

condition.

Of course, it is a tall order to satisfy all these conditons in a reasonable (respectable) prac-

tical design problem. If any of the above conditions are violated, the stress alone cannot

express the full meaning of the optimality condition. This did not deter the widespread

use (or abuse) of the fully stressed design concept. However, it can be used, in an ad hoc

way, to improve the designs, if it is at least treated as an inequality condition. The worst

abuse is when the concept is treated as an equality condition.

It is a well known fact that the active constraints in a stress constraint problem will

rapidly increase as the design approaches the optimum. If one examines the optimality

condition (Eq 108), the Lagrangian multipliers (Eq 111) and the scale factor (Eq 119), it

appears ominous that so many virtual load and displacement vectors have to be generated.
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Even though only the forward and back substitution steps (FBS) have to be repeated

for each virtual load vector, the data handling and the solution time can be quite an

impedimen- in a large scale optimization. However. it will be shown in a later publication

(AFWAL Technical Report) that this need not be the case. With some approximations it

is possible to limit the number of virtual load vectors to as many as the loading conditions

and be independent of the number of variables in the problem. In such a case the stress

constraint problem is no more difficult than the displacement constraint problem.

e. Scale Factor and the Nondimensional Parameters

The scale factors for the membrane-bending structures derived from the first order

approximation (Eqs 72, 79 and 119) are good between some reasonable limits of the target

response ratio 0 (02 in case of frequency constraints). From Fig. 2 one can surmize that the

error in the scale factor and the response predictions beyond the limits 0.7 < 03 < 1.4 tend

to exceed 4 to 5% for structures primarily in bending. The object is now to eliminate the

limitation or extend the range of 3 values indefinitely without sacrificing the accuracy of

the scaling predictions. This can be done very neatly by writing an interaction formula in

the nondimensional parameter space p'. This is akin to mapping the complex membrane-

bending element to a simple membrane element in the parameter space.

A linear interaction formula can be written as

I.LAI (\ 1 I'Bj' 1"
A = + .; . 1n (120)

I'Ai I3 /~

where JIAj and ALBj are the nondimensional parameters given by Eqs 69, 70. The parameters

AAj and IBj are simply

iAj- = 1 -Bj= (121)

A parabolic or other nonlinear interaction formula can be written as

( 'p ( j (1)I (122)

where fi is the aggregate value of n, and it is defined as

= IB, (123)
ABi

p and q are exponents that give the nonlinear interaction while fBi is defined as

_e =(124)
Ft.u

for displacement and stress constraints on membrane-bending structures. When ni = n

for all the elements, then n = ft.
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In fact the interaction formula as defined by Eq 120 reduces the prediction errors to

within one or two percent (See Fig 2) regardless of the range of j3. This is the most impor-

tant property of membrane elements, and it is now extended to membrane bending elements

as well. Actually a nonlinear interaction formula (Eq 122) can completely eliminate the

prediction error, but it takes some effort to solve for the appropriate p and q exponents.

This is a fascinating result because the nondimensional parameters derived from the first

order approximation (Taylor's Series) are instrumental in mapping the membrane-bending

element to simple membrane element properties and eliminate the limitations inherent in

such approximations.

In the case of membrane bending elements with frequency constraints the linear inter-

action formula can be written as

A = IAj (AA3) + B,' (A) (125)
/1Aj JIBj

where I'A, and ABj are defined by Eqs 80 and 81.

The parameter 1Alj and MBj are given by Eq 121. Now ft, the aggregate value of n, is once

again defined by Eq 123 with the 15B3 definition given by

)B (126)
O'--3

The parameter AAj is given by

AAj - - . (127)

and AB3 is given by the solution of the transcendental equation

- _ 7 ,ABj - (128)

The solution of the transcendental equation can raise some interesting questions, and they

can be explored with real structural applications.

An examination of the interaction formula (Eq 125) in the light of extreme cases reveals

interesting information.

CASE 1: The bending stiffness in the mode is insignificant, and it is assumed that AB) -0.

Then PA, = 1 and the scale factor expression reduces to Eq 87.

CASE 2: The axial stiffness in the mode is of minor consequence and /A, - 0. Then the

solution of equation 128 is the scale factor. An examination of three subcases is of

interest.

CASE 2a: The aggregate parameter h = 1. The scale factor reduces to Eq 87.
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CASE 2b: The aggregate parameter ft > 1.0, but the structural mass is insignificant (7, = 0).

Then the scale factor becomes 1

A = (6332) (129)

CASE 2c: The nonstructural mass is insignificant (r, = 0), and ii > 1.0. Then the scale factor

becomes
1A 2 (130)

CASE 3: The aggregate ft = 2

AD) (131)
2

Since the radical under the root is always greater than 31, there is one positive and

one negative root. Only the positive root is significant.

The comments made earlier about mapping the membrane-bending element to simple

membrane element properties is just as valid in the case of frequency constraint problems.

SUMMARY AND CONCLUSIONS

The significance of the generalization process derived in this paper cannot be overem-

phasized. It breaks the barrier for the application of the optimality criteria methods to

most general multidisciplinary structural optimization problems. All four important ele-

ments of the optimality criteria method are expressed as a function of a single quantity,

sensitivity (i.e. gradients of the constraints and the objective functions):

Optimality Conditions - F (Sensitivity)

Lagrangian Multipliers - F2 (Sensitivity)

Resizing Algorithm - F3 (Sensitivity)

Scaling - F4 (Sensitivity)

A sensitivity analysis for all the disciplines that participate in aerospace structural design

is readily available. For example, reference 17 [Venkayya (1985)] contains a summary of

the sensitivity analysis for some of these conditions.

The basic approach of the optimality criteria method was presented earlier in a series

of publications [Venkayya, Khot and Reddy (1969); Venkayya (1971); Venkayya, Khot

and Berke (1973); Venkayya and Tischler (1983); Grandhi and Venkayya (1987); Can-

field, Grandhi and Venkayya (1987)] by the author and his associates at the Air Force

Wright Aeronautical Laboratories. However, the method was presented in the context

of special design conditions and membrane structures with some indication that it could
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be generalized. This created skepticism about its validity in a multidisciplinary setting.

In particular, scaling, the most important element in the optimality criteria approach,

was often dismissed as relevant only in the case of membrane structures and static design

conditions. This paper shows that it is not the case.

A puzzling question is why the optimality criteria approach is needed and how is it

different from the standard nonlinear programming approaches? The basic information

needed in both these methods is not significantly different, and there appears to be a great

deal of similarity. Buu nevertheless, how this information is used and the simplicity of the

approach are the distinction.

In a standard nonlinear programming approach the search for an optimum progresses

from point to point in the design space as indicated by the following equation

x V+
- = x v + aD (132)

This equation expresses the concept of perturbation of the current design by adding (sub-

tracting) the information derived from the sensitivity analysis in order to obtain a new

design. This creates a serious drawback by searching too many points in an n-dimensional

space, particularly when n is large, as in a design with large finite element assemblies.

The most charitable upper limit on the number of variables that the current nonlinear

programming approaches can handle is about 300, unless one professes to know (crystal

ball) how to link these variables to reduce the design space. In addition, they get bogged

down at every relative minimum in their path. As a result, selection of an initial design

and the appropriate step size becomes a complex art and needs a disproportionate amount

of attention that it does not deserve.

The search for the optimum (Eq 23) in an optimality criteria method does not progress
from point to point, but instead it sweeps the design space, as indicated symbolically in

Fig. 1. Of course, sweeping has little advantage without an effective scaling algorithm

to estimate the location of the constraint boundary. The scaling algorithm outlined in

this paper is simple and can handle all the design conditions encountered in aerospace

structural design.

The weighting matrix, A, as defined in the derivation of the optimality conditions not

only eliminates any significant effort to obtain the Lagrangian multipliers, but also offers

opportunities for extension of the method beyond structural design.

An important by product of the optimality criteria is the association of the sensitivity
to some energy or equivalent in the system. Most of the analysis methods are derived

from energy considerations., and as a result, the design information is naturally available

from the analysis. In addition, the formulation developed extremely important design
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parameters (such as As, ,1 A,)3, etc.) which provide significant insight into the expected

behavior of the structure. These parameters, together with the side constraints as defined

in Eq 4, can offer a great deal of freedom in tailoring designs and their behavior at little

or no extra cost.

The sweeping concept together with the scaling algorithm uncouples the number of

design iterations from the number of design variables. This is a significant property

that breaks the barrier of implementing formal optimization in the preliminary design

of aerospace structures (in a multidisciplinary environment) using finite element models.

A proper implementation of the optimality criteria approach offers the promise that

the optimal design can be completed in five to ten cycles of iteration, regardless of the

number of variables and the type of constraints. This is a key requirement for transferring

formal optimization to real aerospace structures design. Then the role of optimization in

structural design would be more positive [Ashley (1981)].

An effective optimization as outlined in this paper offers rich dividends in the form

of performance improvoments as well as weight (cost) reduction in aerospace structures.

The design examples shown earlier [Venkayya, Khot and Reddy (1969); Venkayya (1971);

Venkayya, Khot and Berke (1973); Venkayya and Tischler (1983); Grandhi and Venkayya

(1987); Canfield, Grandhi and Venkayya (19S7)] attest to the conclusions drawn in this

paper.
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4.0 DESIGN SENSITIVITY ANALYSIS

Statement of the optimization problem

Minimize an objective function (or maximize)

W = W(A) (4-1)

where A is the vector of design variables

subject to the constraints

Oj (4) = zj(4) - c.(4) 0 j 1,2,... n, (4-2)

where n, represents the number of constraints.

Inequality constraints Obj _ 0 (or 4j > 0)

Equality constraints 03, = 0

Active and passive constraints

All the constraints within a prescribed distance from the boundary will be considered as

active constraints.

Constraints beyond this distance are considered as passive constraints.
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Only the active constraints will be considered in determining the direction of travel to the

optimum. However, this active and passive constraint status will be continually updated

during the course of the optimization algorithm implementation.

Gradients of the objective function

aw ow(4)(
aA = A

Example: Objective Function-Weight for a truss or a frame
m

W =W(A) = ZAilipi (4-4)
i= 1

where Ai represents the ith design variable and 1i is the length or the surface parameter of

the ith element. pi is the weight density of the material.

In the case of line elements (such as rods and beams) Ai is the cross- sectional area of the

element and 1i is the length.

In the case of surface elements Ai represents the thickness of the element and 1i represents

the surface area of the element. For a given configuration 1i is a fixed quantity. It only

varies in shape optimization.

Then the gradient of the objective function can be written

aA, =pili (4 -5)

The nice thing about the weight as the objective function is that it is a linear function

in the design variables and the derivatives with respect to each design variable can be
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uncoupled. In general the constraint functions are not linear but some can be formulated

such that the derivatives can be uncoupled.

Gradients of the Displacement Constraints

The displacement constraints can be imposed either on individual components of the dis-

placement vector u or a linear combination of the components.

Vj() = zj() - cj(A) j = 1, 2,... p (4-6)

In the first case, consider a constraint on an individual displacement component

zj(A) = Ui  (4- 7)

where ui is the ith component of the displacement vector u.

Example: Tip displacement of the truss or the wing tip transverse displacement.

In the second case, consider a constraint on a linear combination of the displacement

components.

z,(4) =OX1 Ui+ (2 Uk+ 0X3 U1  (4 - 8)

Example: Wing Box Twist Constraint.

Going back to the constraint on the ith component of displacement u, the gradients of the

displacement constraint can be calculated in two ways which will be referred to as Method

1 and Method 2.

Method 1: Displacement constraint gradients by the virtual load method.
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The constrained displacew-v'i wi!! be de(f ned a follows,:

u, - Ftu (4-9)

where F and u are n x I vectors. The displacement vector u is due to the applied load

vector P, where F is referred to as the virtual load vector. The elements of the virtual

load vector are defined in such a way that the product on the right hand side yields the

quantity ui, the ith component of the displacement vector u. By this definition all the

elements of F should be zero with the exception of the ith element which will be 1.

Fi =O for all L $ i

F 1 = 1 for all 1 = i (4-10)

Now the constraint Vj can be defined as

Oi(4) = Ftu - c(4) -< 0 (4- 11)

In a purely displacement constraint problem the constant value cj is generally independent

of the design variables in which case the constraint derivative can be written as

(9AVj =aA~)+ (4- 12)

or
a = F t  a 4 3aA, A-¢ Y - 4

Now we define the equilibrium relations as

P=Ku (4-14)
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F=Kf (4 - 15)

where u and f are the displacement vectors resulting from the application of the force

vectors P and F respectively. Now the displacement vector derivative can be obtained

from Eq. (4-14)
a a a )u+ a u (4-16)

aA, -A OA(h - a~i

Solving for the displacement vector derivative gives

a [a, a
_a = K - 1 aA -(4- 17)2- 1a~- A, ( )

Substitution of Eq. (4-17) in Eq. (4-13) gives the expression for the constraint derivative

in the form

a--- FtKl [9 a (4- 18)

From Equation (4-15)

VP,A -- ft a--P -  aO- (K)u ]  (4-19)

In most practical cases the changes in the design variables do not significantly effect the

load vector P in which case the first term on the right vanishes.

,A, =-f' A(K)a (4-20)

If we recall that the stiffness matrix K is defined as

nt
v

K = Y q,',k (4 -21)
i=l1

where k, is the ith element stiffness matrix and a, is the element to structure compatability

matrix, then

_9Of = k q.= K, (4-22)
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where Ki is given by

'a (k )a, (4-23)

Substituting Eq. (4-22) in Eq. (4-20) one can write the constraint gradient as

, = -ft = -f'kui (4 - 24)

where fi and ui are the it h element displacements in the global coordinate system. From

Equation (4-24) one can conclude that a displacement constraint gradient represents the

virtual strain energy in the element per unit value of the design variable or one might write

Eq. (4-24) as
¢,Au A(4-25)

Ai

Now the procedure for displacement constraint gradients computation by the virtual load

method can be outlined as follows:

1. The displacement vector u is determined by Equation (4-14) which involves three steps.

a) Decomposition of K

K=LDLt (4-26)

b) Forward Substitution to determine y

L = f (4 - 27)
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c) Back Substitution to determine u

DL'u = y (4-28)

2. The displacement vector f is determined by Equation (4-15). For this only forward and

back substitutions have to be repeated since the stiffness matrix is already decomposed

in the last step.

3. Now determination of the constraint gradients with respect to each variable requires

simply substitution of f and u in Equation (4-25).

It is evident from this procedure, that to determine the constraint gradients with respect to

all the variables, one decomposition and two forward and back substitutions are necessary.

However, for each additional constraint only one forward and back substitution is necessary.

If there are n, constraints and n, design variables, then the total number of constraint

gradients to be evaluated is ncg which is given by

n,, = n, x n, (4-29)

The corresponding number of decompositions is given by nd

n= = 1 (4- 30)

The number of forward and back substitutions is nFBS and is given by

nFBS nc +1 (4-31)

If one considers that decomposition of the stiffness matrix requires the most computational

effort and FBS (Forward and Back Substitution) requires a much smaller effort, then

computation of constraint gradients by the virtual load method is very appealing in view

of reducing the total computational effort.
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Method 2: Displacement constraint gradients by a first order Taylor Series approximation.

If u is the displacement vector due to the applied loads, then a change in u due to a change

in the design variable vector can be written in a Taylor's series expansion.

n,, 9U d " nv n,, 091u

u + du = u + _=_ dAi + E E ~ dAjdA j +""* (4-32)

A first order approximation of this series can be written as

dut 1u

du= -a9 dAi (4-33)
2=1

From Equation (4-14)

KO =z-_ u  (4-34)-A,

In the above derivation the changes in the applied load vector due to changes in the design

variables are assumed to be zero.

From Equations (4-33) and (4-34) the constraint gradient can be written as

),Ai -- J - l 1  (4- 35)

The constraint gradient evaluations by a first order approximation of a Taylor Series ex-

pansion involves

ndl

and

nFBS = n, + 1 (4-36)

It is evident from Equations (4-31) and (4-36) that the choice of method 1 or 2 depends on

a comparison of the number of active constraints (n,) and the number of variables (n,).
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In most preliminary design problems using finite element models the number of design

variables is large compared to the number of active constraints. In such cases method

1 is definitely more advantageous. However, when the number of variables is drastically

reduced by procedures such as linking, then the second method can be made competitive.

Gradients of the Stress Constraints

The stress constraints on the elements are derived from material strength considera-

tions and/or the structural concept used in the construction. The stress-stain properties

and the fatigue-fracture behavior are the important factors in material strength consider-

ations. The element overall buckling, local buckling of components, crippling, etc. are the

factors introduced by the structural concept and they would influence the values of the

stress constraints. Once again the stress constraint can be represented by Equation (4-2).

However, the details of the stress constraint vary with the type of element. For instance,

in a simple rod (axial force member) stress constraints can be defined by simple tension

and compression allowables. They can be the same or different. For a membrane plate

(in a biaxial state of stress) the stress constraint definition depends on the type of failure

theory used. The failure theories are as follows:

1. Maximum normal stress

2. Maximum normal strain

3. Maximum shear stress

4. Generalized energy of distortion (or Von Mises)

We will explain the stress constraint gradient in the context of the Von Mises criteria, and

the other three can be treated as special cases or equivalent.
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In a finite element analysis the stress in an element can be written as

q = EDeau (4-37)

where a is the stress vector in the element, E is the matrix of elastic constants, D is the

differential operator and a is the matrix that establishes compatability of the elements and

the structure. For bending elements the design variable will also be part of the right hand

side. For membrane elements

= ED¢q aA (4-38)

Here we made an assumption that the material selection for the element was made earlier.

As an example we will consider the case when the stress vector consists of three elements

{ ax, as,, , where a and ay are the normal stresses in the x and y directions respectively

and ozy is the shear stress.

According to the modified energy of distortion criteria the effective stress in an element is

defined as

2 2 2 2 2 _ 2ef f = z or+ Ocy cy _- y O C°y+ OCzy Cxy (4- 39)

where cc, oc y and cx Ey are functions of the allowable stresses corresponding to the o", cry

and (7,y respectively. The allowable normal stresses can be different in tension and com-

pression. For example, the tension allowable is determined by a combination of factors

involving material stress-strain, fatigue and fracture properties. The compression allowable

is governed by additional factors such as local buckling and crippling.

Now diffireltiation of Equation (4-39) with respect to the design variable gives
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2 )f 2 y - C2oe f f =2 Oc az 2oy CY 7Y cy

0% Oa~v (4 - 40)
- occy a-O + 2 Oz1IC 44A

Now
NAo j - s ad (4-41)

where cta is defined as

98- [oaX ay Uazy] (4- 42)

and c,,, cay and cszv are given by

= 2Cff (4-43)

2 cxV a - x (4-44)
= 2 Cef f

2 c z2 zO (4- 45)
Csy -

2 ceff

It was tacitly assumed in Equation (4-40) that the allowable stresses are independent of

the design variables. But this is not necessarily true in the case of buckling constraints.

Howuever, a modification to account for this dependency can be handled in an approximate

way.

Now recalling the constraint Equation (4-2).

Ok(A) = eff - C < 0 (4 -46)

75 t q (4-47)OA - qs A
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Equations (4-38) and (4-47) give the stress constraint gradient.

Now the stress constraint gradient can be determined by either method 1 or method 2.

Method 1: Stress Constraint Gradients by the Virtual Load Method

The stress in an element can be expressed as

or F' U (4-48)

where F is the virtual load vector on the structure and u is the displacement vector due to

the applied loads. Now a comparison of Equations (4-37) and (4-48) yields the definition

of the virtual load vector as follows:

F t = EDq (4- 49)

Now differentiation of Equation (4-48) with respect to the design variable gives

~ = O t + OF (4-50)aAj -9A -4 +  9A

The first term in Equation (4-50) is generally zero except in the case of bending elements.

Then Equations (4-17) and (4-50) can be written as

a FtK -U (4-51)

Now the stress constraint gradient can be written as

=,- -fit Y (4-52)

Equation (4-52) represents the virtual strain energy in the elements per unit value of the

design variable due to the virtual load and the actual applied load. It should be noted that
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Equations (4-24) and (4-52) are exactly similar in form, but the definition of the applied

virtual load is distinctly different.

Now the stress constraint gradient with respect to the design variable can be written from

Equations (4-47) and (4-52) as

= t--(4 - 53)

Method 2: Stress Constraint Gradient pby a First Order Taylor Series Approximation

The stress constraint gradient by a first order approximation of a Taylor Series can be

written combining Equations (4-34), (4-38) and (4-47).

, -qtE qtaK - (4 - 54)

The computational effort required for the two methods is similar to that presented under

the displacement constraint gradients.

Gradients of the Eizenvalues and Eigenvectors

The generalized linear eigenvalue problem can be written as

AX = ABX (4- 55)

Most free vibration and buckling problems can be represented by Equation (4-55). For

vibration problems the A and B matrices represent the stiffness and mass matrices respec-

tively. In all second order differential equation representations of free-vibration problems,

B is generally symmetric and positive definite and A is also symmetric and at least pos-

itive semidefinite. In buckling problems the A and B matrices represent the linear and
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geometric stiffness matrices respectively. In such problems both A and B are symmetric

positive definite matrices.

For a given eigenvalue (k) and the corresponding eigenvector Xk Equation (4-55) can

be written as

[A-Ak-B] Xk =0 (4-56)

And the normalization equation can be written as

XCB = 1 (4 -57)

Differentiating Equations (4-56) and (4-57) with respect to the ith variable results in the

following equations

(4 - jB - Ak-P,,)-Yk + (4 k 0 (4 - 58)

-Yk,, X MYk + 4'kM-, X k + XI k,, = 0 (4 - 59)

These equations can be rewritten in the following form

(4 - AkB)Xk,, - Ak,BXk = -(4,, - Akk,,)XYk (4 - 60)

1,xj'' = ,(4-61)

Iii iwttrix flotation the above relations can be , :itten a;

k kQ -X 1

Now lot h t lic , igeiVcctor (lrivait lv . and et eigenvalue derivative Ak, can be obtained

(theoretically) by the solution of the' linear Equations (4-62). However, the coefficient
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matrix on the right hand side is singular and the solution is not easy to obtain. One

approach is to find a proper pivoting procedure and solve the system of equations directly.

However, pivoting over all n + 1 equations can destroy the sparseness and/or symmetric

and unsymmetric bandedness properties of the A and B matrices.

An alternate procedure is to solve the eigenvalue and eigenvector derivatives indepen-

dently. To obtain the eigenvalue derivative first pre-multiply equation (4-60) by X-

24tk(A - AkB)Zk, - -X,)k - ).k24tTB-i~k (4- 63)

Then the eigenvector derivative can be written from Equations (4-56) and (4-57)

Ak,, = X 'A,,k - A k .,,k (4- 64)

Now to determine the eigenvector derivative the following procedure is adopted:

Equation (4-60) can he written as

(4 - Akk)-Yk,, = Xk,,Xk - 4,,-k + XkB,,Xk (4 - 65)

Since the coefficient matrix on the left. hand side is singular, a direct solution of Equation

(4-65) is not possible. Instead we will assume the solution of Equation (4-65) as follows:

Y kj = Vk - -Xk (4 -66)

where V A is the larticilar solution of Equation (4-65) and is obtained by fixing one com-

polinct of thc ,igelivector d(rivatiVt and .,olk ing for tlie remainiing components. This is

done by identifying th(, largest component (absolute value) of the eigenvector and fixing
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the corresponding component of the eigenvector derivative to zero Now solve for the re-

maining components of XVk from Equation (4-65). Now to obtain oc, substitute Equation

(4-66) in Equation (4-61) and solve for o.

0== -XBY- !XI.M X (4-67)

In the case of vibration problems the matrices A and B are the stiffness and mass

matrices respectively, and A is the square of the circular frequency of vibration.

A=K B=M ,=w 2  (4-68)

For buckling problems the two matrices A and B are the linear stiffness, K, and the

geometric stiffness matrix, Kg, respectively and A is the buckling load factor.

A = K B = -K9 A = A(p) (4-69)

Eigenvalue and Eigenvector Derivatives of a Non-symmetric Matrix

Consider the eigenvalue Problem

(4 -Ak!),Yk = 0 (4-70)

where .4 is a nori-syninietric matrix, and Ak and Xk are the ith eigenvalue and right

elielivector respectively. The left eigenvector -k associated with Ak is defined by the

equ;t o1011

( ' AkI)k V 0 (4 - 71)

The left arid right eigerivecl irs are equal when A is symmetric (A At)
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The n eigenvalues of the A matrix are determined by solution of an nth order polynomial

defined by

det [A - Ai] = 0 (4-72)

If the n eigenvalues are distinct, the n independent right eigenvectors exist and are

biorthonormal to a set of n independent left eigenvectors,

Y' X = bk1 (4-73)

where bkj is the Kronecker delta. Both the eigenvalues and the eigenvectors may be com-

plex.

Differentiating Equation (4-70) with respect to the design variable

(4 - AkI)XYk,, -- -[a,i- 1\k,iI] :Kk (4 -- 74)

and premultiplying (4-74) by Yt gives

Ak,, = YAXk (4- 75)

Now substituting Equation (4-75) in (4-74) gives

(4 - Ak!/)Yk,, = 4k(j' Ak,,-X) - -,,& (4-76)

However, the above system of equations cannot be solved because the matrix A - Ak/ is

singular and is of rank n - 1.

Now let us write the right eigonvector derivative as before

= k aXk (4 - 77)
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Let us also define the norm condition as follows:

XkMXk (4- 78)

where the vector Xc is the complex conjugate of Xk.

Now differentiation of Equation (4-78) with respect to the ith design variable gives

2Re(XYMtMk,,) + XCMJk = 0 (4 - 79)

Now substitution of Equation (4-77) in (4-79) gives as

t i t
oc= -Re(X YcMVk) - X k M iXk (4- 80)

Now the procedure for determining the eigenvalue and eigenvector derivative can be out-

lined as follows:

1. Determine the right and left eigenvectors corresponding to the eigenvalue Ak.

2. Then determine the eigenvalue derivative by

Ak,, = Y'A,, _X (" - 81)

3. Then write the eigenvector derivative as

Xk,, = Yk + 0CXk (4-82)

4. Now determine the particular solution Vk by solving Equation (4-76) after eliminating

the pivotal row and column from the homogeneous system. The pivotal row and column

are chosen by selecting the largest JIJ . lyll and setting the corresponding component of

the (igenvector derivative to zero. Now the remaining (n - 1) equations can be solved

for the (n - 1) components of the eigenvector derivative.
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5. The value of c< is determined by Equation (4-67).

6. The left eigenvector derivative can be written as

Yk,i - Wk + 13 Yk (4-83)

The procedure for determining Wk is similar to that outlined for V k. The constant ,3 can

be shown to be given by

/3 - -(V Yk + Wk-k+ c) (4-84)

Flutter Velocity Derivatives

The most general way of expressing a flutter condition is as follows:

(~ M ~~ K~ a(V~~))= (4-85)

where M, C and K are the mass, damping and stiffness matrices respectively and j

is an imaginary number. w is the circular frequency of vibration at the flutter condition

or simply the flutter frequency. V is the free stream velocity or the flutter speed, b is

the reference aerodynamic chord, m is the Mach number, m = V/a, and a is the speed

of sound corresponding to the altitude density p. a represents the aerodynamic matrix

which is a function of the reduced frequency and the Mach number, and q is the vector of

generalized coordinates. The reduced frequency k is defined as

k = (4 - 86)

The matrices M, C, and K may be complex as they include the frequency response func-

tions of the servos and controls. Also, the aerodynamic matrix a is complex and depends

on the reduced frequency and the Mach number in a transcendental form.

83



To the homogeneous flutter Equation (4-85) we will add the normalizing condition

qtWq = 1 (4 -87)

Equations (4-85) and (4-87) are a nonlinear system of equations in 2n + 2 unknowns, w,

V, Re(q) and Ia(q), where Re is the real part and Im the imaginary part of the complex

number.

Equation (4-85) can be rewritten as

Fq = 0 (4- 88)

where F is

F =- w 2M +jwC±I- PM)(4- 89)

Differentiating Equation (4-88) with respect to the design variable i gives

.f,,q + Fq,, = 0 (4-90)

F,, = -2ww,,MJ - w'M,, + j ,,I + jwC,, + K,, - p~a V,

pV 2  pV 2  pV 2

2 a 2 amm' - 2

Now a k is the derivative with respect to the reduced frequency and k,, . given by

k, = b (W"Vv - WV,) (4-91)
_ 12

Now F,, can be written as

F, -2wML,, - U,2M,, + jWC + jwC,, + .,, - pVaV,

pV '  b _ (V , V,,) py 2  V, pV12
-, 2 2 a 2 (4-92)

2 V2 a 2
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If we define new quantities W, 2 and f as

_ pVb
W = coefficient of w,j = -2wM + jC - b,k

Z = coefficient of Vi = - pVa + pwb(4 -93)2a am - 2a+ -~

= remaining terms = w12M, - jwC,1 - Ki - pV 2

-' 2

then Equation (4-92) can be written as

.F~i = Wwi + zvi - -f (4-94)

Now Equation (4-90) can be written as

Fq,i + Fq (4-95)

Substituting Equation (4-94) in (4-95) gives

-Fq,4. + W qw,, + gq¢ , - f q =0 (4-96)

or

Fq, + w,+ ZV-r = 0  (4-97)

Equation (4-97) is a complex equation and the real and imaginary parts can be written as

separate equations

(FR + j~l)(qR,, + j.q,,) + (WR + jW 1 )w,, + (?R + j 1 )V, = rR + ir/ (4 - 98)

SRqR,, - Elql,, +j(FRqi,, + FIqR,,) + (YR + jWi)P, + (?R +jgI)V, = rR + jrl (4 - 99)
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tnI~q R, i - k lql, + 1 Rw,i + ZRV, i = r R

EIqR,i + FERqi, + W jw,i + IVi = r, (4 - 100)

Now differentiating Equation (4-87) with respect to the design variable gives

q,,Wvq + qt'vq,t. = 0 (4-101l)

The weighting matrix is assumed to be independent of the design variable. Equation

(4-101) can also be written as

2qtWq i = 0 (4 - 102)

(q R+ jqI)tW (qR,i + jql,i) = 0 (4 - 103)

qt Wq - +qW qIi (t + qR - ql,) = 0 (4 -104)

Now equating the real and imaginary parts separately to zero gives

WqR - q =Wql,i = 0

'Wq + q'wq, = 0 (4 - 105)

Combining Equations (4-100) and (4-105) we can write

FR -FI TR ZR qR,, rR
E! F R  0I I Jr (4- 106)

w 0 v, 0
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Equation (4-106) can be solved directly with real arithmetic, since it is, in general, not

a large system of equations. Generally only w, and V,j are needed and they can be

determined by using the expressions given below in

, [t(K, - AM,j)q - Apt4,kq,(0]

1p1(9 + A)q (4 107)

where the following modifications are assumed for the flutter equation

[-AM + K + A] q=0 (4-108)

The associated left eigenvector p is defined as the solution of

e t [-AM+K+A1=0 (4-109)

Then the flutter velocity derivative can be written as

bw bw 3

2 K'i 2 k Ai (4 -110)

where A = w 2 andA= 1

If Equations (4-85) and (4-87) are used as a nonlinear system for evaluating the flutter

solution and it is evaluated by the Newton-Raphson method, then the iterative solution

consists of the solution of a system of linear equations with the same coefficient matrix

but with different right-hand sides. There fore, evaluation of the flutter derivatives simply

requires another solution with r as the known right-hand side.

Aeroelastic Divergence

The aeroelastic divergence equation can be obtained from Equation (4-85) by setting

iv0

PV- [a(rn)] + q 0 (4 -111)

87



where a and K are real matrices.

Equation (4-111) represents a linear eigenvalue problem and E is the eigenvalue when

the Mach number, m, is held constant. In such a case the eigenvalue problem has to be

solved for different p values in order to cover all the altitudes of the flight envelope.

On the other hand if the critical value of V has to be matched for a given altitude, it

will become a nonlinear eigenvalue problem, since the unknown appears in the aerodynamic

matrix through m.

The first derivatives of q and V can be obtained from

(pVa +-a q'i -(p i )  (4-112)

0 V,0 8
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FOREWORD

"OPTSTAT" is a structural optimization program with membrane elements

and is intended for the design of structures subjected to static loads.

The program has been in use in various forms for the past ten years. It

was developed primarily for in-house research in structural optimization.

It is an incore program with four membrane elements.

The program was developed under Task 240102, "Design and Analysis

Methods for Aerospace Vehicles", Work Unit 24010208, "Automated Design and

Analysis Methods". Captain Hartley M. Caldwell, III is the Task Engineer.

The manuscript was originally released by the Authors in June, 1979.
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ABSTRACT

This report contains documentation for the program "OPTSTAT". The

program is intended for the optimization of aerospace structures modeled

with membrane elements and subjected to static loads. The weight of the

structure is the merit function in optimization. The constraints are on

stresses, displacements and sizes of the elements. The program library

consists of a bar, a membrane triangle, a membrane quadrilateral and a

shear panel. The bar and shear panel can only be used with materials

having isotropic or equivalent isotropic properties. The triangle and

quadrilateral can be used with isotropic, orthotropic or layered composite

materials.

The equations of finite element analysis, element formulations,

description of the optimization algorithms, program organization and

subroutine descriptions provide a comprehensive theoretical background

for the program. The input and output descriptions together with the

sample problem and the results should provide adequate information for

the use of this program.
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1. INTRODUCTION

"OPTSTAT" is an acronym for the program OPTimization of Structures

for STATic loads. The program was primarily intended for in-house

research studies in structural optimization. Various versions of this

program have been used by the authors in the development of structural

optimization algorithms over the past ten years. The results obtained

from the earlier versions were published in a number of reports and

(1-6)papers . Efficiency and conciseness were the driving factors in the

evolution of the program. Since it was not intended to be a production

program, no particular attention was paid to user convenience.

This program was distributed earlier with makeshift input and output

instructions. It was used for four years (1973 - 1976) as a demonstration

program in a short course, "Computer Methods of Optimum Structural Design"

at the University of Missouri, Rolla, Missouri. It was also used in the

Structural Design course at the University of Dayton and the Air Force

Institute of Technology.

The purpose of this report is to generate comprehensive documentation

for the "OPTSTAT" program.

The program is based on the displacement method of finite element

naysi(79) . In such an analysis the continuum is replaced by a

discrete model consisting of a finite number of nodes connected by

elements (See Figure 1). This discretization reduces the original

differential equations of the continuti to a set of algebraic equations

which can be solved much more readily on digital computers.
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The program has basically four finite elements:

1. Bar (Axial Force Member)

2. Membrane Triangle

3. Membrane Quadrilateral

4. Shear Panel

The four elements and their local coordinate systems are shown in Figure 2.

The bar is a constant strain line element and is equivalent to a rod element

in the NASTRAN (1 0 ) program. The membrane triangle is a constant strain

plate element similar to TRMEM in NASTRAN. The membrane quadrilateral is

constructed out of four (non-overlapping) constant strain membrane triangles

(element 2) with a fictitious interior node. This interior node is later

removed by static condensation. This element is similar to QDMEM2 in

NASTRAN. The shear panel is also constructed out of four non-overlapping

triangles with a fictitious interior node. However, only the shear energy

is considered in determining the stiffness of this element. Although the

formulation is somewhat different, this element gives comparable results

to the NASTRAN SHEAR element or the so called Garvey shear panel(11)

The basis for the derivation of the shear panel is emperical, and it

is primarily intended to eliminate some of the difficulties encountered

in using membrane triangles and quadrilaterals. For example, in beam

problems (rectangular beams, I-beam, Box Beams including multicell wings

and fuselage structures) the high stress gradients in the webs do not

justify the use of constant strain triangles or quadrilaterals derived

from these triangles. In fact, use of such elements for the webs (spars

and ribs in wings) overestimates the stiffness by an order of magnitude.
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FIG. 2: Elements and Local Coordinate System
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Aerospace engineers have offset this difficulty to a large extent by

judicious use of membrane elements in conjunction with the shear panels.

In fact the early finite element models o wings and fuselages consisted

primarily of bars and shear panels. However, the present practice of

using membrane triangles and quadrilaterals for the top and bottom skins,

bars for the posts, spar and rib caps, and shear panels for the spars and

ribs eliminates to a large extent the need for determining the equivalent

thicknesses and cross-sectional areas in the bars and shear panels model.

The models consisting of these elements are most satisfactory for determining

the primary load paths in built-up structures such as wings and fuselages.

In addition the simplicity of these elements makes interpretation of the

results easy and also keeps the analysis costs low because the stiffness

matrices of these elements can be generated in a fraction of a second.

The detailed ormulation and additional information on these elements are

given in Section 3.

In the finite element analysis a large proportion of the time is spent

in the solution of the force displacement relations. The program uses

standard Gaussian elimination with modifications to take into account the

symmetry and sparsness characteristics of the stiffness matrix. The details

of the solution scheme and storage of the stiffness matrix are given in

Sections 2 and 6.

For optimization the program uses algorithms based on an optimality

criteria 3 ). Most of the optimality criteria algorithms are derived for

stiffness type constraints. In particular "OPTSTAT" uses the optimality

criteria derived for generalized stiffness and displacement constraints.
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The generalized stiffness algorithm is used for stress constraint problems

and the two together for stress and displacement constrained problems. The

generalized stiffness algorithm is truly valid only when the stress limits

are uniform for all the elements. However, it is being used as an approxi-

mation for variable stress limit problems. Variable stress limits arise

because of different material, local buckling considerations etc. For

isotropic constant stress elements the generalized stiffness algorithm

reduces to the well known stress ratio algorithm.

"OPTSTAT" is an incore program whose core requirements depend on the

problem size, primarily measured in terms of the number of degrees of freedom

and the size of the semi-bandwidth. However, the bandwidth per se is not

considered in the program. With an available core of about 120K8 one can

solve problems of up to 200 to 300 degrees of freedom. With the full core

of a machine like the CDC 6600, it is possible to solve problems of up to

900 degrees of freedom and a comparable number of elements. The details of

core requirements are discussed in Appendix A.

The program is written in standard ANSI Fortran IV and is portable to

most computers with this capability. It has been run on at least five

different computers.

A-1l 95



2. ANALYSIS

In the finite element analysis the continuum is replaced by a discrete

model consisting of a finite number of nodes connected by elements (members).

The rationale in such an approximation is that the response between the nodes

(i.e. in the elements) can be expressed as a function of the response at the

nodes. The functional relationship between the two responses is approximated

by various interpolation functions or shape functions. The type of functions

depends on the complexity of the problem at hand. This discretization reduces

the original differential equations of the continuum to a set of algebraic

equations which can be solved much more readily on digital computers.

The equations of the finite element analysis can be derived conveniently

by considering the strain energy of the deformed system. For example, if the

elastic body is idealized by m finite elements connecting q nodes (See

Figure 1), the strain energy of the i th element can be written as

1 ! t*

i i dV (1)
IVi

where ai and ci are the stress and strain vectors and Vi is the volume of the

element. For a linearly elastic body the relation between stress and strain

can be written as

9i i i (2)

where Ei is the symmetric matrix of material elastic constants. For typical

plane stress problems the elastic constants matrix is of dimension 3x3. For

*Superscript t on a matrix represents transpose
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an isotropic material in plane stress problems the elements of E are as

follows:

1 0

E = E 2 l l0 (3)~ -1_1

where E and i are the elastic modulus and poisson's ratio of the material

respectively. For an orthotropic raterial the elastic constants matrix is

given by

V1 p8 0

E = E2 B 0 (4)
G-B(-0

where E and E2 are the longitudinal and transverse modulii respectively in

the directions of the material property axes. a is the ratio of transverse

to longitudinal modulus (E2/E1 ). G and P are the shear modulus and poisson's

ratio respectively.

The essence of the finite element approximation is that the internal

displacements of the elements are expressed as functions of the displacements

of the discrete nodes to which they are connected. The local coordinate

systems and the nodal degrees of freedom of the four elements are shown

in Figure 2. The functional relationship between the element internal

displacements and the discrete nodal displacements is given by

=i : i Yi (5)
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where the matrix wi represents the displacements in the element which are

functions of the spatial coordinates (x, y). The shape function ji is a

rectangular matrix, and its elements are also functions of the spatial

coordinates. The vector vi represents the nodal displacements in the

direction of the element degrees of freedom in the local coordinate system

(Figure 2). Now the strain-displacenent relations can be written as

Bi =  W Vi (6)

where B is a differential operator. For a plane stress problem B is given

by

a
ax

B 0 a (7)
- ay

a a
ay ax

Substitution of Equations 2, 5 and 6 in 1 gives the expression for strain

energy in the following form

l t k. vi (8)2i =i 2 i

where k i is the element (member) stiffness matrix with respect to the discrete

coordinates v and is given by

: B Bt i i dV (9)
Vi

An alternate but a convenient method of determining the elements of the

member stiffness matrix is by invoking the principle of 
virtual work (12)

which gives
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1 X k pp)t (q) dV(10
pq -Vi

where a P) is the stress state due to the element displacement configuration

in which Vp 1 while all other v's are zero. Similarly q) is the strain

state due to the unit displacement configuration in the direction of the q th

degree of freedom. These two conditions are shown in Figure 3 for the

degrees of freedom 1 and 2 of the membrane triangle. It should be noted

that besides assuming appropriate shape functions, the integration in

Equations 9 or 10 is one of the difficult tasks in the case of complex

elements in finite element analysis. However, for membrane elements this

integration does not present any difficulties as will be seen in the next

section. For more complex elements the usual practice is to adopt numerical

integration schemes(15'16)

From Equation 8 and Castigliano's first theorem, the relation between

the element nodal forces and the displacements may be written as

ai [ - :i i 
(11)

where si is the element nodal force matrix corresponding to the displacement

matrix vi. Similar force-displacement relations for the total structure can

be derived from the strain energy of the structure. The total strain energy

r of the structure can be written as the sum of the energies of the

individual components.

m m
r m = 1  k i (12)
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In general, for most structures, it is convenient to define a local

coordinate system for each element and a global coordinate system for the

total structure. In such a case the element and structure generalized

coordinates can be related by

Yi : i (13)

where ai is the compatibility matrix. Its elements can be determined by

kinematic reasoning alone provided the structure is kinematically determinate.

The matrix u is the generalized displacement vector of the structure in the

global coordinate system. It is interesting to note that Equation 13 not

only transforms element displacements from local to global coordinates but

also gives information about how the elements are connected to the structure.

From Equation 13 and the principle of virtual work it is easy to show that the

transformation between the forces on the structure and the element internal

forces is given by

Sat si (14)

where P is the force vector on the structure in the global coordinate system.

The transformation given in Equation 14 is sometimes referred to as a

contragradient transformation

Substitution of Equation 13 in 12 gives the expression for the total

strain energy in the form

r l t K U (15)

where K, the total stiffness matrix of the structure, is written as the sum

of the component stiffness matrices.

m (16)
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Again using Castigliano's first theorem the relation between the generalized

force matrix P corresponding to the displacement matrix u may be written as

= [j] Ku (17)

In most structural analysis problems the stiffness matrix K is sparsely

populated. It is essential to take advantage of this fact in solving the

load deflection equations (Equation 17), particularly in the case of problems

with a large number of degrees of freedom where the cost of computation can

be prohibitive otherwise. The "OPTSTAT" program uses Gaussian elimination

with modifications to take into account the symmetry and sparseness of the

stiffness matrix.

Basically Gaussian elimination involves decomposition of the stiffness

matrix by

K = L D Lt (18)

where L is the unit lower triangular matrix and D is a diagonal matrix. The

advantage of this decomposition scheme is that the L matrix retains some of

the sparseness characteristics of K which consequently reduces the number

of computations. Also L and D can be assigned the same storage as K.

The next step is the forward substitution by

L Y = P (19)

where the matrix Y is given by

Y = D Lt u (20)

In Equation 19 the solution of Y can be accomplished by simple forward

substitution. Once Y is obtained, u can be solved by back substitution

using Equation 20. The last two steps together are generally referred to
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as Forward-Back Substitution (FBS). Solution of Equation 17 for multiple

load vectors involves the decomposition of the stiffness matrix once and

repetition of FBS as many times as there are load vectors.

With the help of these basic equations the steps in the finite element

analysis can be outlined as follows:

1. Input information consists of

a. Geometry of the structure

Node Coordinates

Element Connections

Section Properties

b. Material properties

c. Boundary conditions

d. Loading

e. Clues for appropriate (desired) output.

2. Element information consists of

a. Determination of the local coordinate system for each element.

b. Selection of the appropriate shape functions (Equation 5).

c. Determination of the element stiffness matrix (Equation 9 or 10).

3. Transformation of the element stiffness matrix to the global

coordinate system (Equation 16 without summation).

4. Determination of the structure stiffness matrix by summation of the

component stiffnesses (Equation 16).

5. Incorporation of the boundary conditions.

6. Solution of the load-deflection equations (Equations 17, 18, 19 and 20).
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7. Determination of the element displacements in their local coordinate

system (Equation 13).

8. Determination of the stresses and energies in each element

(Equations 6, 5, and 2).

The next section consists of the details of the stiffness matrix

formulations for the four elements in this program.
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3. FINITE ELEMENTS

The program "OPTSTAT" has four elements as mentioned earlier. They

are all membrane elements. These four elements are generally adequate for

determining the primary load paths of most aircraft structures. However,

for a detailed stress analysis of local areas, higher order elements may

be necessary.

BAR (ROD) ELEMENT

Basically this element is an axial force member. Its primary use is

in two and three dimensional truss structures. It is also used extensively

as spar and rib caps, posts around shear panels, stiffners and other line

elements in aircraft structures. The local coordinate system of this

element is shown in Figure 2. The positive x-axis is directed along the

line joining the two ends. v, and v2 represent the element end displace-

ments. The corresponding two end forces are sl and s2 . The displacement

field in the element is assumed to be linear which gives constant strain.

For a linearly elastic material this assumption yields constant stress as

well.

If w, the displacement at any point along the length of the bar, is

given by

w = ax + b (21)

where a and b are two undetermined coefficients and x is the coordinate of

the point in the local coordinate system, then the end displacements v,

and v2 are given by

[] [:(22)
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where xI and x2 are the coordinates of the two ends in the local coordinate

system. Then the shape function (Equation 5) corresponding to this linear

displacement field can be written as

= 1( _ 2) x - X2), -(x - x (23)

From the strain-displacement relations, the axial strain in the element is

given by

= aw = a (24)

From the principle of virtual work (Equation 10) the individual elements of

the member stiffness matrix can be written as

k 0 0i) C~j dV =(_l) i+j L (25)

where A is the cross-sectional area, L is the length of the member, and E is

the modulus of elasticity of the material. The member stiffness matrix is

given by

k = 7E (26)

The member force matrix is given by

s = k v (27)

The stress in the member is given by

ax =E cx (28)

or

a = 2 (29)
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The strain energy in the element is given by

1it
Ti 2s t (30)

or

e A L (31)

TRIANGULAR MEMBRANE ELEMENT

The membrane triangle is the basic plate element in the program. It is

used to construct the membrane quadrilateral as well as the shear panel with

some modifications. The membrane triangle can be used effectively in all

cases where the primary loading is inplane forces. These include top and

bottom skins of aircraft wings, flanges of I and box beams when they are

subjected to constant normal stresses (tension or compression) only and

skins of sandwich construction. However, they are not suitable for situations

where high stress gradients exist. For example, they are unsuitable for spars

and ribs of wings and other lifting surfaces, webs of I and box beams and flat

plates where the primary load is bending. If used in such cases, they over-

estimate the stiffness or generate singularity. Figure 2 shows the triangle

elements with the local coordinate system. The generalized coordinates

vl , v2, ---, v6 represent the inplane displacements of the three nodes in the

local coordinate system. The displacement field in the element is assumed to

be linear. This gives constant strain in the element. For a linearly elastic

material the stress in the element will also be constant.

The linear displacement field in the element can be represented by

wx= a x + b, y + cl

(32)

Wy a2 x + b2 y + c2
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where wx and Wy are the x-y displacements in the plane of the plate in the

local coordinate system. al. b1 etc. are the six undetermined coefficients.

Equation 32 can be written in matrix form as follows:

lOOH I 8

O0Oxyj bl1

C (33)

a2

b 2

C2.i

The six unknown coefficients can be uniquely determined by the six boundary

conditions at the nodes.

V1  Xl Y1  1 0 0 0 a1

v3  X2  2 0 0 0 b

v5 x3  Y3  1 0 0 0 Cl
- - = -- - - - - - -- - - - - - ---- (34)

V2  0 0 0 xi yl 1 a2

v4 0 0 0 X 2  y2  1 b

V6  0 0 0 x3  Y3  1

where x, YIp ---" x3 and Y3 are the coordinates of the three nodes of the

triangle in the local coordinate system. It should be noted that the nodal

displacements are grouped into x and y directions, so that the nodal

coordinate matrix on the right hand side partitions into a diagonal matrix.

The inversion of the partitioned diagonal matrix involves simply the inversion

of the component matrix. Now the shape matrix * is given by

S x ."I  (35)
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where the matrix x is given by

x= (36)x O 10 x y 0

and the Z matrix is given by

.....( 3 7 )

The coordinate matrix X is given by

Xl Yl 1

X= x2 Y2 1 (38)

x3 Y3 1

It is interesting to note that each column of Z-1 represents a unit displace-

ment mode: i.e. the jth column of the inverse represents a displacement mode

in which v. = I while all other nodal displacements are zero (See Figure 3).

This fact is used to advantage in determining the elements of the member

stiffness matrix.

From linear strain-displacement relations the strains can be written as

9wxE x - = aI1 (39)

y = w- = b2  (40)

x w wy = b + a2  (41)

From the principle of virtual work (Equation 10) the elements of the member
stiffness matrix can be written as

(i)t (J) dV = (i) E dV (42)

V V
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where P)i and e' ) are the stress and strain matrices corresponding to the

unit displacement modes explained under Equation 38. E is the elastic

constants matrix with respect to the element stiffness axis (See the local

coordinate system of the triangu'ar element in Fig. 2). If the material

axis and the element stiffness axis coincide, E would be the same as E

given in Equation 4 for orthotropic materials. In layered composite

elements however, the material axis and the element local axis do not

generally coincide and transformation of E to the element local axis is

necessary before using it in Equation 42. This transformation can be

accomplished by considerations of energy invariance with axis rotation.

For instance the element strain energy with respect to the material and

the element local axes can be written as

Tm = I m m (43)

=1 C (44)

where cm is the strain matrix with reference to the material property axis.

c is the strain matrix with reference to the element local axis. The strain

matrices with reference to the material and element local axes are related

by

~m Tc(45)

where T, the strain transformation matrix, is given by

2e 2e
Cos e Sine 0 Sn2e

T : Sin 2e Cos e --Sin2o (46)

-Sin2o Sin2e Cos2o
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and where e is the angle between the element local axis and the material

axis. By substituting Equation 45 in 43 and invoking the condition of

energy invariance with axis rotation, the expression for the elastic

constants transformation can be written as

E = Tt E m T (47)

The linear displacement variation in Equation 32 implies constant strain,

therefore the integral in Equation 4" can be replaced by the volume of the

element:

ki = (t E (j) (48)

where lxi is the determinant of the nodal coordinate matrix which represents

twice the area of the element and t is the thickness of the element. Now the

stiffness matrix of the element is given by

E~)tE E( l )  E€) E '( ) ---- El E E 5

(2 )t E E() e(2)t E c
(2 ) .( 2 )t E c(6)

k 1xI t (49)

(6)t (1)  (6)t c (2) (6)t : (6)

The stress matrix in the element is given by

a = E c (50)

The stresses obtained by Equation 50 are with respect to the element local

axis. It is often necessary to transform these to the material property axis.

This transformation can be obtained by

m =Ts (51)
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where a m is the stress matrix with respect to the material axis. The stress

transformation matrix from the element local axes to the material axis is

given by

Cos 2 9 Sin2 Sin26

Ts Sin 2e Cos2e -Sin2o (52)

[-Sin2e Sin2e Cos2e

The member force matrix is given by

s = k v (53)

The strain energy in the element is given by

Ti = IX ~at at (54)

or

Ti 2=s v (55)

The next important step in the evaluation of the stress state in an

element is the selection of a suitable failure criteria because of the

combined stresses (ax , ay and a xy) in plate elements. For isotropic materials

the energy of distortion or the Von-Mises criterion is accepted as most

satisfactory. The effective stress according to this criterion is given by
2 2 (ja+3 2 )1/2 (6eff= (ax + Oy - ax 0y + )xy 2 (56)

When the allowable stresses are different in different dir ctions, the effec-

tive stress ratio (ESR) according to the modified energy of distortion

criterion can be obtained by

ESR2 2 _ -x) + a (57)
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where XX and YY are the tension or compression allowable in the x and y

directions respectively, and ZZ is the shear allowable. Then the margin

of safety (MS) is determined by

MS = l-ESR (58)
ESR

The requirement of a positive margin of safety constitutes a stress constraint

in optimization.

The failure criterion as given by Equation 57 is adequate for isotropic

as well as equivalent orthotropic structures. However, in the case of fiber

reinforced layered composite materials, the question becomes much more compli-

cated and there is little agreement on the type of criterion to be used. The

fiber failure, matrix failure, delamination, and the effects of cut outs and

bolt holes can trigger different failure modes. It is difficult, if not

impossible, to combine all these effects into a single neat failure criterion

as in metal structures. The present practice consists of a number of emperical

criteria whose justification sometimes appears to be more emotional than

rational. A review of some of these criteria is given in References (16'17 )

The "OPTSTAT" program uses the failure criterion given by Equation 57 for

isotropic and equivalent orthotropic structures. For layered composite

structures the fiber failure is used as a failure criterion. However, it

is a relatively simple matter to modify this criterion to suit other

requirements.

The composite element in "OPTSTAT" consists of stacked orthotropic

membrane elements. Each orthotropic element (layer) in the stack represents

the combined effect of all the fibers in one direction. The stiffness of

the composite element is obtained by adding the stiffnesses of the component
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orthotropic elements representing all the fiber directions. This addition

of the stiffnesses can be written as

t k. (59)
j=1l

where k. represents the stiffness of all the fibers in one direction and £

represents the number of fiber directions in the composite element. The

matrix k. for each direction of fibers is determined by Equation 49. It is

also assumed, for the summation in Equation 59 to be valid, that the stiffness

matrices k. in each composite element are determined with respect to the same

set of reference axis such as the local element axis.

The composite element in "OPTSTAT" has at present a provision for four

fiber orientations. These fiber orientations are 0', 90', and +450. It is

further assumed that the composite element is made of a balanced laminate.

By adjusting the relative percentages of the fibers, the optimum directional

properties of the laminate can be obtained. In assessing the failure of the

laminate a weighted average of the effective stress ratios is considered

instead of the failure of the individual fibers. This weighted average ESR

is computed by

ESR = ao ESRo + ago ESRgo + O45 ESR4 5 + "-45 ESR-45  (60)

where aO, a9go a45 and a 4 5 are the percentage of fibers in the 00, 90° and

+450 respectively. Similarly ESR O, ESR90, ESR4 5 and ESR_ 45 are the effective

stress ratios of the 0', 90, 450 and -450 layers.

QUADRILATERAL MEMBRANE ELEMENT

The quadrilateral element is most frequently used to represent membrane

skins unless the corners etc. require the use of the triangular element.

Figure 4 shows the local coordinate system and the generalized coordinates
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(displacements) vI through v8 . The element is assumed to be a flat plate,

and all nodes are assumed to lie on a plane connecting the first three

nodes (1, 2, and 3). In effect the warping in the element is ignored.

This approximation results in an overestimation of the stiffness of a

truly warped quadrilateral element. In most cases the effect of the

approximation is small, and it can be further reduced by reducing the mesh

size of the model in the regions of high warping. However, if the warp is

too large, the quadrilateral should be broken up into two or more triangles.

As mentioned earlier, the stiffness of the quadrilateral element is

determined by breaking it into four component triangles as shown in Figure 4.

A fictitious node in the quadrilateral is located by averaging the coordinates

of the four nodes as given by

xI + x2 + x3 +x 4  (61)x5 =4

Yl + Y2 + Y3 + Y4 (62)

Y5 = 4

The stiffness of the four triangles is then computed by Equation 49 in the

local coordinate system shown in Figure 2c. Addition of the four stiffness

matrices gives a 10 x 10 stiffness matrix with two degrees of freedom included

for the fifth node. This fictitious node is later removed by static condensa-

tion before adding to the total structure. The procedure for static condensa-

tion is outlined next.

The force displacement relations of the 5 node quadrilateral are written

as

RQ - QrQ (63)
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where the subscript refers to the quadrilateral element with 5 nodes.

Equation 63, partitioned to isolate the degrees of freedom of the fifth

node, can be written as

Equation 64 can be written a.s two separate equations

I= I I + r I (66)

Since the fifth node does not actually exist in the original model, no external

forces can be applied to this node. This condition gives

: 'l1  k r (67)

Substitution of Equation 67 in 65 gives

I (kI,I -II II'j kII,I ) r, (68)

From Equation 68 the stiffness matrix of the original quadrilateral can be

written as

k k kl yiy k, k (69)

The stiffness as obtained by Equation 69 is added to the total structure

after appropriate coordinate transformations to the global coordinate system.

When the structure displacements are determined, the fifth node displacements

can be determined by Equation 67. Now the stresses in each triangle can be

determined as before. The effective stress ratio is determined for each

triangle separately (Equation 57), and then a weighted average is used in

computing the effective stress ratio and the margin of safety. This weighted
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average is computed by

(ESR)I A, + (ESR)2 A2 + (ESR)3 A3 + (ESR)4 A4  (70)

A1 + A2 + A3 + A 4

where (ESR)l thru (ESR)4 are the effective stress ratios of the four triangles.

A1 thru A4 are the respective planform areas of the triangles. In the case of

fiber reinforced composite elements a further averaging across the thickness

of the elements is used, as in Equation 59, in determining the effective stress

ratio. Now the margin of safety MS is computed as before by Eq. 58.

SHEAR PANEL

As the name indicates the shear panel is devised for the purpose of

representing shear transmitting elements. For example in wing structures

the top and bottom skins can be represented by membrane (triangle and

quadrilateral) elements. If the same elements are used for spars and ribs,

the resulting finite element model grossly overestimates the stiffness of the

structure. What this means is that the displacements obtained by this model

will be much smaller, or if this model is used for dynamic analysis, the

frequencies of the structure will be much higher and cannot be matched with

the results obtained from ground vibration tests. This behavior is due to

the assumption of constant strain (stress) in the membrane element formulations.

Most web elements in box or I-beams carry primarily shear and some normal

stresses. In other words their deformation is primarily due to shear and

not due to normal stresses. The normal stresses in webs usually have steep

stress gradients, and the assumption of constant stress (or strain) is not

Justified. To offset this difficulty, and yet preserve the simplicity of

the constant strain elements, a shear panel was formulated (Reference )

with the assumption that it carries only shear stresses. The bars and other
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membrane elements that surround the shear panel are supposed to carry the

normal stresses. Such a situation does not actually exist in reality, and

thus the shear panel is an emperical element. However, the models built

on such an assumption appear to produce satisfactory results.

Until recently it was a common practice in aircraft companies to model

wings, fuselages, and empennage structures simply by bars and shear panels

to obtain primary load path information. In such idealizations it was a

common practice to assign a third of the cross-sectional area as spar and

rib caps and the remainder for the shear panels. It should be pointed out

that every shear panel must be surrounded on all four sides by normal stress

carrying elements such as bars or membrane or bending elements. If the

natural model does not contain such an element on any side of the shear

panel, a nominal (or fictitious) bar (post) must be provided. Otherwise the

model will have a singularity.

The shear panel in "OPTSTAT" is constructed out of four triangles with

the fictitious node inside as in the membrane quadrilateral discussed

earlier. However, the stiffness matrices of the component triangles are

determined by considering only the shear strain energy (Equation 48).

k 1 (i) G t(J) (71)kij = 7 l xy xy

where G is the shear modulus, and c(i) and c(i) are the shear strains due to
xy xy

the unit displacement modes discussed earlier. There is one point that must

be made here. The shear stress (strain) in an element changes with the

orientation of the reference axis. Thus the stiffness matrix of the element

can be sensitive to the reference axis. For rectangular elements the shear

strain energy would be the same regardless of which side is selected for the
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reference axis. However, for quadrilaterals the stiffness matrix does

depend on the reference axis. The errors produced by such departures

are usually not significant, but it is worthwhile to make note of the

assumptions involved. The OPTSTAT program has a provision for specifying

any one of the four sides of the quadrilateral as the reference axis.

As in the quadrilateral element the shear stresses in all four

triangles are determined separately but with respect to the same

reference axis. Of course, the normal stresses in the shear panels have

no meaning. The margin of safety is determined by a weighted average of

the effective stress ratios (ESR) as in the quadrilateral. The strain

energy is determined by considering only the shear stress and strain.

It should be noted that the shear panel can be used only as an isotropic

or equivalent isotropic element.
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4. OPTIMALITY CONDITIONS

4.1 General

The optimization method is explained here in the context of the

procedure used in the computer program "OPTSTAT". Basically this

procedure consists of two steps. The first involves derivation of

optimality conditions and associating them with an energy condition

in the structure. In the second step, an iterative algorithm is derived

with the help of the energy condition to achieve the optimality.

The weight of the structure is the objective function to be

minimized and it is given by
m

W(A)= Pi A i (72)
i=l 1 1 1

where pi is the weight density and the product Ai £i represents the

volume of the element. The vector A represents the design variables

and they are the only quantities that change in the optimization. The

constraint conditions are given by

Gi  (A) Gi  (A ,  A2  . ... Am) Gio i = 1,2,....p. (73)

and

A (L) s A < 6(u) (74)

The first set is considered as response (behavioral) constraints and
the second as size constraints. The vectors A(L) and A(u) are the

lower and upper limits respectively on the sizes.

The Lagrangian formulation for constrained minimization can be

written as P

00) = W(A) + Ai 'i (A) (75)
i=1
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where 0(A) is the Lagrangian function and X's are the Lagrangian

multipliers. It is assumed that there are p constraints and they are

represented by

i = Gi(8) - Gio 0 (76)

It should be noted that the constraint set-p includes only the response

constraints and not the size constraints.

Minimization of the Lagrangian with respect to the desiqn variable

vector A gives the condition for the stationary value of the objective

function with the constraint conditions , as

DO Ti [W(A)] +I A. 2- [j(A)] = 0 (77)aA T i - J-1 ~ A

From equation 77 the optimality condition can be written as follows:

1 ei. A. = I i = 1, 2 ....... m (78)

The m such equations corresponding to the m design variables can

be written in the matrix form as follows:

eA= 1 (79)

The elements of matrix e are given by

eij a -[W(A)__(80)

Equation 80 represents the ratio of constraint to objective functions

gradients with respect to the design variables. These ratios can be

associated with special forms of energy densities depending on the

type of constraint functions. This aspect will be discussed later in
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connection with three types of constraints.

The solution of the optimization problem involves (m+p)

unknown quantities, where m is the number of design variables and

p is the number of Langrangian multipliers corresponding to p

constraint conditions., However, Eq. 79 represents only m equations. The

additional p equations can be obtained by writing the original

constraint conditions as follows:

M eij Pi v = G jo =1, 2 ....... P (81)

i=l 311 3

Combining Eqs. 79 and 81 gives the necessary equations for determining

the Lagrangian multipliers as follows:

H X (82)

where the matrix H is given by

H et A e (83)

thA is a diagonal matrix and its i diagonal element is given by

A = Pivi (84)

The elements of matrix H cannot be determined explicitly because the

e and A matrices are functions of the design variable vector A which

is itself unknown. Eqs. 79 and 82 are nonlinear sets of equations,

and they can be solved only by iterative methods.

To reduce some of the difficulties involved in solving the nonlinear

sets of equations a number of simplifying assumptions were made in

constructing iterative algorithms in the program "OPTSTAT". For
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instance specialization of Eq. 82 to a single constraint and some

simplifying assumptions give a simple expression for A as follows

for most stiffness type constraints.

W (85)

If the A's are used simply as weighting parameters, then in multiple

constraints their value can be approximated by

Wi (86)
Gi

o

This simplification eliminates the need for the solution of Eq. 16 and

the associated positive negative A's dilemma. Using this approach

a number of truss structures were optimized (3 )" There are a number

of other ways indicated in the literature.

4.2 Specialization to Generalized Stiffness.

If R and r are the generalized force (external) and the corresponding

displacement vectors, the generalized stiffness constraint will be

defined as

Gi(A) ! ' Rti r. i 1 1, 2, . . ... p (87)
. .2 P -

The p constraints correspond to p independent loading conditions R..

Substitution of equation 87 in 80 gives the expression for eij as

2 pi Ai i(88)

Where eij is the strain energy density in the element i due to the loading

condition J.

The optimality condition for the generalized stiffness involving

multiple loading conditions can be stated from equation 79 as follows:
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"The weighted sum of the strain energy densities corresponding

to multiple loading conditions should be equal to unity in all the

elements." The Lagrangian multipliers are the weighting parameters.

4.3 Specialization to Displacement Constraints

In the case of displacement constraints in the direction of

specified degrees of freedom the constraint condition will be defined as

G. (A) = Ft. r = , 2, ... p (89)

where F. is the virtual load vector corresponding to the jth displace-

ment constraint. The elements of the vector F. are all zero except

in the direction of the constrained degree of freedom. The value in

that direction is unity. The vector r is the displacement vector due to

the applied load. The displacements due to virtual load vectors will

be designated by f. Now substitution of equation PO in Pn aives the

expression for e.. as ft
e.. f -z K (90)

Pj i Aii

thwhere e i is the virtual strain energy density in the i element

corresponding to the jth constraint condition. The optimality

condition for multiple displacement constraints can be stated as follows:

"The weighted sum of the virtual strain energy densities

corresponding to multiple displacement constraints should be equal to

unity in all the elements". The Lagrangian multipliers are once again

the weighting parameters.
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From the optimality conditions derived in this section, the

element resizing algorithms can be derived directly. The form of

the resizing algorithm is as follows:

b

AV+l = AV 1/2 (9l)

j=l 13

where cj are the weighting parameters which can be approximated as

functions of Lagrangian multipliers. The sizes of the elements as

well as the percentage fiber orientations in each element are

determined by such an energy based algorithm. The details of the

implementation of the algorithm are given in Reference 2.
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5. ORGANIZATION OF THE PROGRAM

The material presented in this section is intended either to help

introduce changes into the program or to expand its scope for the specific

needs of a researcher.as the authors have done in the past ten years.

The steps outlined at the end of Section 2 are summarized in the flow-

chart in Figure 5. There are a total of 15 boxes in the flow-chart.

Each of these boxes generally involves one or more subroutines. The

subroutines that belong to each of thse boxes are identified first,

then the function of each subroutine will be discussed in the next

section with the help of the equations given in Sections 2, 3, and 4.

Box 1 - lInput

Input in the present version of the "OPTSTAT" program is not in

subroutine form. However, the input statements are all at the beginning

of the program, and thus they can be grouped into a single subroutine.

For example, it is relatively easy to write a subroutine with NASTRAN type

input. The description of the various arrays (See input instructions)

and their dimension requirements given in Appendix A can be quite helpful

in writing such an input routine.

Box 2 - Map Stiffness Matrix

This step involves a single subroutine called "POP". The purpose of

this routine is simply to estimate the storage requirements of the stiffness

matrix ani to map its profile. The stiffness matrix is stored in a single

array called SK. The elements of the matrix are stored columnwise
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starting from the first non-zero element in the column to the diagonal

element. Since the matrix is symmetric, only the upper triangle is

stored.

Box 3 - Element Stiffness

There are four elements in the program. All of them require the

subroutines "COORD" and "PREPAR". The subroutine "TRECON" is required

if the material is orthotropic. The orthotropic material can be used

only triangular and quadrilateral elements. In addition all the plate

elements require the routine "ELSTIC". The remaining subroutines are listed

separately for each element.

i. Bar (Rod) Element:

The bar element is shown in Figure 2a with the local coordinate

system and degrees of freedom. This element requires the subroutine

"ELSTIF" which generates the bar stiffness matrix in the local coordinate

system and also transforms it to the global coordinate system.

ii. Triangular Membrane Element:

The element and its local coordinate system are shown in Figure 2b.

The subroutine "PLSTIF" is the only other routine required by this element.

It generates the stiffness matrix of the triangle in the local coordinate

system.

iii. Quadrilateral Membrane Element and Shear Panel

The elements and their local coordinate system are shown in Figure 2c.

The subroutines "QDRLTL", "PLSTIF", "SUM", "CONDNS", "CHANGE" and "CRAMER"

are the additional routines required by these elements. Together these

subroutines generate the stiffness matrix of either the quadrilateral membrane

or shear panel. The routine "QDRLTL" calls "PLSTIF", "SUM" and "CONDNS".

The routine "PLSTIF" calls "CRAMER". Similarly "CONDNS" calls "CHANGE".
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Box 4 - Transform

This step involves a single subroutine called "TRNSFM". It

transforms the stiffness matrices of the triangles, quadrilaterals and

shear panels from the local to the global coordinate system.

Box 5 - Assemble

"ASEMBL" is the only subroutine used in this step. Its purpose is

to add the element stiffness matrices to the total stiffness matrix of

the structure. The steps 3 thru 5 ?orm a loop in which all the element

stiffness matrices are computed and assembled into the total stiffness

matrix.

Box 6 - Boundaries

The routine called "BOUND2" eliminates the rows and columns of the

stiffness matrix corresponding to the support degrees of freedom of the

structure. In addition it also condenses the stiffness matrix.

Box 7 - Reduce Force

This step involves a routine called "REDUCE". It eliminates the rows

of the force matrix corresponding to the support degrees of freedom.

Box 8 - Solution of the Force Deflection Equations

The routine "GAUSS" solves the load deflection equations by Gaussian

elimination. A large percentage of the analysis time (80 to 90%) is

spent in this routine, and its efficiency is extremely important in reducing

the costs of the analysis. At the end of this step the displacements of

the structure are available in condensed form (excluding boundary degrees

of freedom) in the global coordinate system.
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Box 9 - Initial Scaling Parameter A

The analysis in the "OPTSTAT" program is made with the relative

design vector, which is obtained by normalizing the design vector with

the largest value of the design variable. The actual design variables

are determined by scaling through to the constraint surface. The scaling

is done by adjusting the parameter A. The initial value of this scaling

parameter is obtained by equating the total strain energy to the energy

capacity of the structure (1). The energy capacity is defined (arbitrary)

as the product of the material volume of the structure times the square

of the allowable strain. The scaling parameter represents the product

of the largest value of the design variable times the modules of elasticity

of a reference material. One of the materials of the structure is arbitrary

assigned as the reference material.

Box 10 - Displacement Constraints

If the design conditions specify displacement constraints, the active

constraints are determined in step 10A and the scaling parameter A is

adjusted in step lOB. The purpose of this step is to scale the design

to satisfy displacement constraints. All the operations in this

step are included in the main program and no subroutines are involved.

Box 11 - Element Forces

The program determines the stresses in all the elements in this

step. In addition to strain energies in the elements are also determined

in this step. The element forces are not actually determined. The

stresses are determined directly from element displacements. The sub-

routines used in this step depend on the type of element Involved. The

subroutines "COORD", "PREPAR" and "ELFORC" are required by all the elements.

In addition all the plate elements require the routine "ELSTIC". The
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subroutine "TRECON" is required if the material is orthotropic. The

orthotropic material can be used only for triangular and quadrilateral

elements. The remaining subroutines are listed separately for each

element.

i. Bar (Rod) Element:

The stress in this element is computed in the program itself. No

additional routines are involved. At the same time the element strain

energy is also computed.

ii. Triangular Membrane Element:

The subroutines "STRESS" and "CRAMER" are involved in this step.

The routine "STRESS" calls "CRAMER". The purpose of this routine is to

calculate stresses in the triangular element. In addition this routine

calculates strain energy and the effective stress in the element (See

Equations 44 and 45).

iii. Quadrilateral Membrane and Shear Panel

This step involves routines "QDRLTL", "PLSTIF", "SUM", "CONDNS",

"CRAMER", "QLSTRS" and "STRESS". It should be noted that the routine

"QDRLTL" calls "PLSTIF", "SUM" and "CONDNS". "PLSTIF" in turn calls

"CRAMER".

Box 12 - Stress Constraints

It is assumed in the "OPTSTAT" program that constraints are part

of all structural design problems. If they are active the scaling parameter

adjusted in Box 12A. At the end of step 12 a completely feasible design

Is available. No subroutines are involved in this step.

Box 13 - Feasible Lowest Weight

The weight of the structure is determined in this step. Also the

weights of the four groups of elements are determined at the same time.
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Box 14 - Design Complete

The decision whether the design is complete is based on the number

of cycles of iteration specified in stress and displacement constraint

modes. "OPTSTAT" designs the structures in two modes. First it resizes

the elements in stress constraint mode. This resizing is continued

as long as there is reduction in weight. There it enters displacement

constraint mode if there are constraints on displacements.

The resizing in stress constraint mode is relatively simple because

it is based on strain energy density of the elements. The strain energy

in the elements is already determined in step 11. The only subroutine

used in this case is "LMSIZE" in case of composite elements. This routine

determines percentage fibers in each direction.

Resizing in displacement constraint mode is more involved. Resizing

in this step is based on the virtual strain energy of the elements. To

determine the virtual energy in the elements the structure has to be

analyzed with the virtual loads. The latter steps involves repetition

of forward-ba substition of the Gausian elimination. The subroutines

"REDUCE", "GAUSS1" and "RESTOR" are used for determining the virtual

displacements of the structure. For determining virtual strain energies

the routines "COORD", "ELFORC", and "PREPAR" are required for all the

elements. In addition all the plate elements require the routines "ELSTIC"

and "UNITEG". The subroutine "TRECON" is required in case of orthotropic

materials. The subroutine "LMSIZE" is required for all layered composite

elements. The remaininq subroutines are listed separately for each element.

i. Bar (Rod) Element:

The virtual strain energy in this element is determined in the program

itself. No additional subroutines are involved.
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ii. Triangular Membrane Element:

The subroutines "PLSTIF" and "CRAMER" are the additional routines

required. "PLSTIF" routine calls "CRAMER".

iii. Quadrilateral Membrane and Shear Panel.

The subroutines "ADRLTL", "PLSTIF", "SUM", "CONDNS" and "CHANGE"

are the additional routines required by these elements. The routine

"QDRLTL" calls "PLSTIF", "SUM" and "CONDNS". The routine "PLSTIF" calls

"CRAMER". Similarly "CONDNS" calls "CHANGE".

Box 15 - Output - Design Information

The output of the program consists of element information and the

nodal information. The subroutines used for computing the element

information are the source as in step 11. For nodal information the

subroutine "PRNTDR" is used. The section on "OUTPUT" gives the details

of the format of the output.

The two subroutines "LACALC" and "LAYPR" convert the percentage

fibers in each direction to the nearest discrete number of layers in

case of composite elements.

In addition to the above 15 steps there are instructions for weight

computations and other details, and their purpose can be identified from

the program. There are very few comment cards in the main body of the

program and this omission is by design in order to avoid continuous

updating. The user can incorporate his own comment cards with the

help of the explanation given in this section.
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6. DESCRIPTION OF THE SUBROUTINES

"ANALYZE" consists of the main program and 21 Subroutines. The main

program has 260 cards. The length of the Subroutines varies from 15 to

62 cards. The total length of the program is under 1000 cards. A list

of the Subroutines, the number of Cards in each Subroutine and other

details are given in Table 1. The flow chart, Fig. 5, and the explanation

in the previous section give details of the main program. The description

of the Subroutines is given in the remainder of this section.

Subroutine "POP"

The purpose of Subroutine "POP" is to estimate the storage requirements

of the stiffness matrix before actually determining it. This information

can be generated from the element connections with the nodes. For example,

if an element connects 4 nodes, and if each node has 3 degrees of freedom

in the global coordinate system, then the stiffness matrix of the element

would be of dimension 12 x 12. This matrix can be partitioned four ways,

in both row and column directions as shown in Fig. 6. The location of

these sixteen submatrices in the total stiffness matrix can be determined

by the address of the nodes to which the element is connected. If the

element is connected to the nodes MA, MB, MC,and MD, then the addresses of

the element submatrices in the total stiffness matrix are shown in Fig. 6.

If all the elements are connected to all the nodes, then the stiffness

matrix of the structure will be fully populated. The non-zero elements

in the matrix are considered as population. Since most of the elements

connect only a few nodes, the stiffness matrices are usually sparsely

populated. Determining the profile of the stiffness matrix population

is the essential function of the routine "POP".
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3MA- 2 + + + + + + + + + + + +

+ + + + + +

+ + + + + + + + + + + +-- -- - - - -I - - -- - - - - - - - - -I -- - - -- - -

+ + + + + + + + + + + +

3 -2+ + + + + + + + + +

+ + + + + + + + + + + +

3MD-2 + + + + + + + + + + + +

+ + + a + + + + + + + + +

+ + + + + a + + g+ + +

Fig. 6 Partitianed Element Siffness Matrix and Addresses in the

Total Stiffness Matrix
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The distribution of the nonzero elements is dependent upon the

way the nodes of the finite element model are numbered. Because of the

symmetry of the stiffness matrix, only the lower or upper triangular

matrix is considered. For the purpose of this discussion definitions of

the following terms are in order. The gross population (Pgo) of the
gross

stiffness matrix is defined as the total number of elements in the

upper triangle of the matrix. The net population (P net) is the total

number of non-zero elements in the upper triangle. Zeros resulting from

transformations are not excluded from the net population. The apparent

population (P apparent) is the actual number of elements considered as

nonzeros by a given solution scheme. From these definitions

net - apparent - gross (92)

For a given structure Pgross and Pnet are Invariant and are given by

Pgross = N (N+1) (93)

and
m

net = n (n + 1) (number of nodes) + E n2 [ki (k1-1)] .n2(NR) (94)2 i=l 2
2

where N is the total number of degrees of freedom of the structure, n is

the number of degrees of freedom of each node (all the nodes are assumed

to have the same number of degrees of freedom; when this Is not true the

necessary modification Is simple), ki is the number of nodes to which the

ith element Is connected, and m Is the number of elements in the structure.

The quantity NR is given by

pNR E (b i - 1) (95)

i=l
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where bi is the number of elements connecting the same pair of nodes and

p is the total number of pairs of directly connected nodes. If the

structure consists of bar and/or beam elements only, NR is zero.

For the example shown in Figure 6a, the value of NR is 3.

The quantity Papparent is dependent on the nature of the solution

scheme used. For Gaussian elimination with no pivoting (LDLT), Papparent

may be defined as
N

Papparent =l Q (96)

where Q. = j - Ri + 1 and where Ri is the row number of the first nonzero

element in the jth column. The solution scheme is most efficient when

Papparent = P n e t  However, in large practical structures this condition

is difficult to attain.

The value of P changes with the node numbering scheme of
apparent

the finite element model. The example shown in Figure 7 illustrates this

point. A seven node three dimensional bar structure (n = 3) is numbered

in three different ways and the resulting effect on the respective stiff-

ness matrices is shown. The non-zero elements are marked by (+). The

populations for the three cases are also given in the same figure.

Papparent represents the number of storage locations required for the

stiffness matrix.
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Subroutine "ELSTIC"

This routine generates the 3 x 3 elastic constants matrix for a

given material (see Eq. 3).

Subroutine "COORD"

This routine establishes the local coordinate system for all the

elements and also determines the nodal coordinates in the local system.

It generates the direction cosine matrix which will be used to transform

the element stiffness matrices to the global coordinate system (see

Eqs. 13 and 16).

i. Bar Element

The local coordinate system of the bar element is established by

drawing a line between the two nodes MA and MB (see Fig. 2) connecting

the bar. The direction cosines are determined by

XComp X MA - MB

YComp = MA " MB (97)

ZComp ZMA - ZMB

2 y2 2o )l/2
Comp + Comp +Comp

= L om Cm m n COMP (99)L I L

where XMA, YMA and ZMA are the three coordinates of the node MA in global

coordinate system. The direction cosines fil m1,and n, become the first

row of the 3 x 3 matrix A.
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ii. Triangular Membrane Element

The local coordinate system of the triangular membrane element is

established by assigning the local x-axis to the line joining

nodes MA and MB. The direction cosines of this line are determined as

in the case of the bar, element. The plane of the plate is established by

two unit vectors in the directions of the lines joining nodes MA-MB and

MA-MC. If a and b are these two unit vectors, then the normal to the

plane is obtained by

a x bc (100)

Since a and b are not orthogonal vectors, C is not a unit vector.

The unit vector in this direction is given by

cC 7 (10,1)

The local z-axis is in the direction of the unit vector c. Now

the local y-axis is established by

X a(102)

The direction cosines of x and y become the first two rows of matrix A.

iii. Quadrilateral Membrane and Shear Panel

The local coordinate system of the quadrilateral membrane and the

shear panel are established by a procedure similar to that of the triangle.

The plane of the triangle connecting the three nodes MA, MB, and MC becomes

the reference plane'. Any warping in the quadrilaterals and shear panels is

ignored. If there is too much warping in the quadrilaterals, it is better

to divide them into two or more triangles or reduce the mesh size. In the

case of excessively warped shear panels, the size of the grid must be
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reduced. "OPTSTAT" does not have a provision for determining the warp

and the consequent kick forces.

The node MA of the element becomes the orig'in of the element local

coordinate system and the coordinates of the remaining nodes are determined

by expressions similar to the following:

x3 = (XMC - XMA)kI + (YMC - YMA)ml + (MC - ZMA)n,

= (XMc " XMA) 2 + (YMC - YMA)m 2 + (ZMC - MA)R2

This subroutine also determines the coordinates of the fictitious node

needed to break the quadrilateral and shear panels into four triangles.

This interior node is established by

x I + x2 + x3 + X 4x5 4

(103)

y l + Y2 + Y3 + Y4
Y5 :4

where xl, x2 .... x5 and yl, Y2 .... Y5 are the coordinates of the five nodes

(including the fictitious interior node) of the quadrilaterals and shear

panels in the local coordinate system.

Subroutine "ELSTIF"

This subroutine determines t:,e stiffness matrix of the bar by Eq. 22.

It also transforms the bar stiffne,; matrix to the global coordinate system

by

Ki t (104)
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Subroutines "PLSTIF" and "CRAMER"

The routine "PLSTIF" determines the element stiffness matrix of the

triangle in the local coordinate system. This i.s also the basic routine

for determining the stiffness matrices of the four triangles of the

quadrilateral and the shear panel.

"PLSTIF" first calls the routine "CRAMER", which determines the

inverse of the matrix X by Cramer's rule. The matrix X is given by Eq. 34.

The determinant of X represents twice the area of the triangle.

Then the "PLSTIF" subroutine determines the element stiffness matrix

by Eq. 40. In determining the matrices e(i) and c(J), it takes advantage

of the fact that the columns of Z-1 (see Eq. 33) represent unit displacement

modes (see explanation under Eq. 34).

In computing the stiffness matrices of the triangles of the shear

panels, "PLSTIF" considers only the shear strain energy. For example, in

such a case, Eq. 40 becomes

(1) (1) (1) (2) (1) (6)

kxy Gxy xyGE xy- Exy GF xy

(6) (1) (6) (2) (6) (6)
LxyGExy C xyGE Ex- C xGxy

Subroutine "QDRLTL"

This subroutine simply manages the routines "PLSTIF", "SUM", and

"CONDNS" in computing the stiffness matrix of the quadrilateral membrane

and shear panel. This routine also makes provision for assigning different

sides as reference axis for the shear panels.
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Subroutine "SUM"

This subroutine adds the four triangle stiffness matrices computed

by "PLSTIF" to produce a 10 x 10 stiffness matri-x (including two degrees

of freedom for the interior node) for the quadrilateral or shear panel.

Subroutine "CONDNS"

This routine condenses the 10 x 10 quadrilateral or shear panel

stiffness matrix to an 8 x 8 matrix. The condensation is done by using

Eq. 56.

Subroutine "CHANGE"

This routine interchanges the rows and columns of the quadrilateral

(or shear panel) stiffness matrix so that the element degrees of freedom

are in ascending order before addition to the structure stiffness matrix.

This step is necessary because the routine "ASEMBL" assumes that the

element degrees of freedom are in ascending order.

Subroutine "TRNSFM"

This routine transforms the plate element stiffness matrices from the

local to the global coordinate system by (see Eq. 16)

Ki a t k a1 (106)

where K is the transformed element stiffness matrix of the i th element.

Subroutine "ASEMBL"

This routine adds the element stiffness matrices to the total stiff-

ness matrix.
m

K - Z K i (107)
- i=l
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For an explanation of the rules of this addition see the description of

subroutine "POP". It should be noted that only the upper half of the

stiffness matrix is stored. This storage is columnwise starting with the

first non-zero element above the diagonal.

Subroutine "PRINTK"

The purpose of this routine is to print the stiffness matrix (if

desired) rowwise starting with the first non-zero element and proceeding

to the diagonal.

Subroutine "BOUND2"

This routine eliminates the rows and columns corresponding to the

constrained degrees of freedom and condenses the stiffness matrix.

Subroutine "REDUCE"

This routine eliminates the rows of the applied force matrix

corresponding to the constrained degrees of freedom. It is assumed that

each column of the force matrix represents an independent load condition.

Subroutine "GAUSS"

"GAUSS" solves the load deflection equations (Eq. 17) by Gaussian

elimination. The first step of the solution is the decomposition of the

stiffness matrix by Eq. 18. The next two steps represent forward and back

substitution using Eqs. 19 and 20 respectively. For the solution of

additional load vectors only the steps FBS have to be repeated. If "GAUSS"

is entered with any value other'than 0 for the parameter NDCOMP, only the

last two steps will be executed. The matrices L and 0 are stored in place

of the original stiffness matrix.
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Subroutine "RESTOR"

This routine restores the displacement or force matrix to full size

by assigning zero values to boundary degrees of freedom.

Subroutine "ELFORC"

This routine extracts the element displacements from the global

coordinate system and transforms them to the local coordinate system by

-Eq. 13.

Subroutine "STRESS"

The purpose of the "STRESS" routine is to compute strains and stresses

in the triangular element. It first calls the routine "CRAMER" which

computes X 1 (Eq. 34) by Cramer's rule. The strains in the element are then

calculated by Eqs. 30 and 35 thru 37. The stresses in the element are

computed by Eq. 2. Also it computes the strain energy and the effective

stress in the element by Eqs. I and 45 respectively.

Subroutine "QLSTRS"

This routine prepares the data for computing stresses in the four

triangles of the quadrilateral or shear panel elements. First it determines

the interior node displacements from the corner node displacements using

Eq. 54. Then it calls subroutine "STRESS" to compute the stresses in the

four triangles. It adds the strain energy of the four triangles to obtain

the total strain energy. It identifies the triangle with the largest

effective stress and normalizes the effective stress of the three remaining

triangles with respect to this largest value.

Subroutine "PRNTDR"

This subroutine prints out the table of node information. This includes

the node number, its coordinates, applied forces and the displacements.
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NAME NUMBER OF CARDS CALLED FROM

OPTSTAT 895 Main Program

POP 62 OPTSTAT

ELSTIC 15 OPTSTAT

COORD 44 OPTSTAT

ELSTIF 21 OPTSTAT

PLSTIF 46 OPTSTAT, QDRLTL

CRAMER 19 PLSTIF. STRESS

QDRLTL 32 OPTSTAT

sum 23 QDRLTL, QLSTRS

CONDNS 36 QDRLTL. QLSTRA

CHANGE 25 CONONS

TRNSFM 
36 OPTS TAT

ASEMBL 41 OPTSTAT

PRINTK 15 OPTSTAT

BOUND2 35 OPTSTAT

REDUCE 18 OPTSTAT

GAUSS 57 OPISTAT

RESTOR 28 OPISTAT

ELFORC 22 OPTSTAT

STRESS 33 OPTSTAT. QLSTRS

QLSTRS 65 OPTsTAT

PRNTOR 39 OPTSTAT

PREPAR 60 opTSTAT

TRECON 40 OPTSTAT

GAUSSI 35 OPTsTAT

UNITEG 40 OPTSTAT

LMSIZE 45 OPTSTAT

LAYCALC 60 OPTSTAT

SLAYPR 

28 OPISTAT

TOTAL 1911

Table 1: Program Description
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7. INPUT INSTRUCTIONS

Input for the programs is divided into a number of card sets.

Each card set will consist of one or more cards. Only three

Formats are used for input. An integer Format (1415), a floating

point Format (6F10.O) and a mixed Format 3(FlO.0,215). The first

five card sets will each have one card regardless of the size of the

problem. The number of cards required for the remaining card sets

depends on the problem size. The first card set indicates the number

of problems (structures) to be analyzed. If this number is more than

one, the program assumes that the remaining card sets will be supplied

for each problem one after the other. The next card set is for the

title of the problem. Card sets three and four define the basic

parameters like the number of elements, nodes etc. And set five defines

minimum size etc. The remaining card sets define material properties

(6-11), type of elements (12), element connections (13, 14, 15, 16),

material code for the elements (17 and 18) etc. The input instructions

in the following pages explain the function of each card set.

SQ
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INPUT FOR PROGRAM OPTSTAT

CARD SET PARAMETER DESCRIPTION
(FORMAT)

1 NSTR Number of problems to be solved.
(1415)

2 TITLE A user selected title of the problem to
(8Al 0) be solved (alpha-numeric description).

Card sets 3, 4 and 5 (each contains only one card)
define a set of control parameters to provide
flexibility to the user in defining the problem
and selecting the input (output) options.

3 MEMBS Number of elements.
(1415) JOINTS Number of nodes.

NBNDRY Number of restrained degrees of freedom.
LOADS Number of loading conditions.

mm 2 Two dimensional problemMM M 3 Three dimensional problem

F4< No displacement constraints
=1 Displacement constraint is the same

LMTDSP LMTDSP for all nodes.
>1 Displacement constraint can vary

per node.

LMTCCL Number of cycles of iteration using
the recursion relation based on
displacement gradients.

INCHES INCHES =I Coordinate data is in inches.IH Coordinate data is in feet.

KSP Applied forces are in kips.
KIPS KIPS L1 Applied forces are in pounds.

LSTCCL Number of cycles of iteration using
the recursion relation based on the
energy stored in each element.

NR Variable used only for calculating the
net population of the stiffness matrix.
It has no other role in the program.
Thus if the net population figure is of
little interest, any arbitrary number
may be input.
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CARD SET PARAMETER DESCRIPTION
(FORMAT)

l Input initial thicknesses of the

IAREAS IAREAS elements
A tl Initial thicknesses are set by the

program. (1.0 in.)

=0 Design in the strength mode until the
weight increases and then either quit
or proceed to the displacement mode.

INSIST INSIST =1 Complete all cycles in the strength
mode and proceed to the displacement
mode.

=2 Directly proceed to the displacement
mode.

=0 No additional output requested for

LPRINT LPRINT i layered composite elements.
RI 0 Additional output for layered

composite elements.

4 NMAT Total number of materials (isotropic +

(1415) composite).

NISOTR Number of composite materials.

=0 For a layered composite element, the
0Q fibers are defined per element with
respect to the global coordinate system.

=1 For a layered composite element, the 00
INDANG INDANG fibers are defined per element with re-

spect to the local element coordinate
system.

=2 The direction cosines of the 00 fibers
L are defined with respect to the global

coordinate system.

=0 Problem contains no layered composite
LAYERD LAYERD elements.

Problem contains layered composite

L elements.
NCDPEL NCDPEL [I Element data is read one card per element.

CE DElement data is read in condensed format.

NCDPND NCDPND F= Node data is read one card per node.

121 NQde data is read in condensed format.

F[o Minimum allowable size in the same for
INDMIN INDMIN all elements.

Minimum sizes of the elements are input.
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CARD SET PARAMETER DESCRIPTION

(FORMAT)

[z0 Use the program for structural

KANLYZE KANLYZE I optimization.
=1 Use the program for structural

analysis only. No resizing.

[=O No maximum size will be specified

MAXSZE MAXSZE I for the elements.
L =1 Maximum allowable sizes of the

elements are input.

=1 Minimum proportions of 00, 90*,
+45* layers will be input for each

MNLAYR MNLAYR member.
# Minimum proportions of the 00, 900,

+450 layers are the same for all
elements.

5 AEMNMM Minimum allowable element size.
(6F10.3)

DINCR A parameter to determine the active
set of displacement constraints.
Usually 1.Ol<DINC<l.1

THKLAM Minimum layer thickness.

SPRDF Shear panel reduction factor.
Usually .5<SPRDF<.8

Material Properties Data: Card Sets 6 thru 11 arej
for defining material properties data. i

6 YOUNGM(I) Youngs modulus in psi/10
6 of the Ith

(6F10.3) material.

POISON(I) Poisson's ratio of the Ith material.

RHOl(1) Density in lbs/in 3 of the Ith material.

I= 1,..., NMAT

Card Sets 7 thru 10 are relevant only if anisotropic

materials are used. They should be skipped if
NISOTR - 0 (See Card Set 4 for the definition of
NISOTR).
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CARD SET PARAMETER DESCRIPTION
(TOMAT)

7 ELCNST(I) Elastic modulus in psi/lO 6 transverse
(6F10.3) to the fiber direction for the Ith

composite material.

ELCNST(I+l) Shear modulus in psi/lO 6 for the Ith
composite material.

I = 1, 2 * NISOTR, 2

Card Sets 8 thru 10 are for defining the orientation of
the anisotropic material property axis. The user should
select one of these three options based on the value of
the parameter "INDANG" in Card Set 4.

8 XANG(I) The angle in degrees that the 00 fibers
(6FI0.3) of the Ith element makes with the local

element coordinate system.

I = 1,..., MEMBS

9 XANG(I) The angle in degrees that the 00 fibers
(6F10.3) of the Ith element makes with the X-axis

of the global coordinate system.

YANG(I) The angle in degrees that the 00 fibers
of the Ith element makes with the Y-axis
of the global coordinate system.

ZANG(I) The angle in degrees that the 00 fibers
of the Ith element makes with the Z-axis
of the global coordinate system.

I 1,..., MEMBS

10 AX Direction cosine of the angle the 00
(6FI0.3) fibers make with the X-axis of the

global coordinate system.

AY Direction cosine of the angle the 00
fibers make with the Y-axis of the
global coordinate system.

AZ Direction cosine of the angle the 00
fibers make with the Z-axis of the
global coordinate system.
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CARD SET PARAMETER DESCRIPTION
(FORMAT)

11 ALSTRS(I) Tension allowable of the Ith material
(6FI0.3) in psi/lO 3 parallel to the 00 fiber

direction.

ALSTRS(I+I) Compression allowable of the Ith
material in psi/10 3 parallel to
the 00 fiber direction.

ALSTRS(I+2) Tension allowable of the Ith material
in psi/IO 3 transverse to the 00 fiber
direction.

ALSTRS(I+3) Compression allowable of the Ith

material in psi/lO 3 transverse to
the 0' fiber direction.

ALSTRS(I+4) Shear allowable of the Ith material
in psi/10 3 transverse to the 0' fiber
direction.

I = 1, 5*NMAT, 5

Card Sets 12 thru 23 define element types, connections,
material code and properties. The user can choose either
a condensed form or a card per element form by giving
NCDPEL=O or I in Card Set 4. Card Sets 12 thru 22
describe the condensed form. Card Set 23 describes the
alternate form. The user should choose either one or the
other but not both.

ELEMENT TYPES

12 NNODES(I) Element Type
(1415) 1 = 1,..., MEMBS

-2 BAR

NNODES(I) =3 TRIANGLE
=4 QUADRILATERAL MEMBRANE
=5 SHEAR PANEL

ELEMENT CONNECTIONS

13 MA(I) First node number of each element.
(1415) I = 1,..., MEMBS
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CARD SET PARAMETER DESCRIPTION
TFUMT

14 MB(1) Second node number of each element.
(1415) I = 1,..., MEMBS

15 MC(I) Third node number of each element.
(1415) I = 1,..., MEMBS

16 MD(I) Fourth node number of each element.
(1415) I = 1,..., MEMBS

NOTE: For bars leave MC(I) and MD(I) blank. For triangles leave MD(I) blank.
For each element let MA(I) be the lowest node number and MB(I) be the
next lowest. For Quadrilaterals and Shear Panels, MC(I) and MD(I) are
determined by continuing in the direction defined by MA(I) and MB(I).

[MATERIALS CODE FOR THE ELEMENTS'I

Card Set 17 is relevant only when there are two or
more materials: i.e. IF NMAT>I in Card Set 4

17 MYOUNG(I) Material property number of the Ith

(1415) I = I,..., MEMBS element.

SCard Set 18 is relevant only for layered composite

materials. IF LAYERD=O in Card Set 4, skip Card
Set 18.1

18 LAM(I) r=o Isotropic element.
(1415) I = 1,..., MEMBS =1 Fiber orientations 00, 900, +450

are in the proportions .25, .25,
.50o

-2 Fiber orientations 00, 900 are in

LAM(I) the proportions .50, .50
=3 Fiber orientations +450 are in the

proportions 1.00
=4 Fiber orientations 00, +450 are in

the proportions 1/3, 2/3.
>4 Fiber orientations 900, +450 are in

the proportions 1/3, 2/3.
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CARD SET PARAMETER DESCRIPTION
(FORMAT)

SELEMENT SIZES

Card Sets 19 thru 21 are necessary only if the user
wants to give initial sizes for the elements. Other-
wise the program assigns equal sizes for all the
elements. The parameter IAREAS (0 or 1) in Card
Set 3 indicates the choice. IF IAREAS=O, skip Card
Sets 19 thru 21.

19 AE(I) Initial thickness of each eler'ent.
(6FI0.3) I = 1,..., MEMBS For a bar, thickness is cross-sectional

area.

If all the elements ere made of isotropic materials,
skip Card Sets 20 and 21. Check the parameter
LAYERD in Card Set 4.

20 AEX(l) Proportion of fibers in the 00
(6F10.3) I = 1,..., MEMBS direction for the Ith element.

21 AEY(I) Proportion of fibers in the 900
(6FI0.3) I = 1,..., MEMBS direction for the Ith element.

Card Set 22 is necessary only if there are individual
minimum sizes for the elements. If the minimum size
is the same for all the elements, then it is defined
on Card Set 5 as AEMNMM. IF INDMIN-O, (Card Set 4)
skip Card Set 22.

22 AEMNM(I) Minimum size of the Ith element.
(6FI0.3) I = 1,..., MEMBS

Card Set 23 is an alternate form for element informa-
tion, and it is selected by the user when NCDPEL=l
(Card Set 4).

A-70 154



CARD SET PARAMETER DESCRIPTION
(FORMAT)

23 KX Element number.
(815, 4FI0.3)

NNODES(I) See CARD SET 12

MYOUNG(I) See CARD SET 17

MA(I) See CARD SET 13

MB() See CARD SET 14

MC(I) See CARD SET 15

MD(I) See CARD SET 16

LAM(I) See CARD SET 18

AE(I) See CARD SET 19

AEX(I) See CARD SET 20

AEY(I) See CARD SET 21

AEMNM(I) See CARD SET 22

I = 1,..., MEMBS

Card Set 24 is necessary only when there are maximum
limits on the element sizes. If the parameter
MAXSZE=O (Card Set 4), skip Card Set 24.

24 AEMAX(I) Maximum size of the Ith element.
(6F10.3) I = 1,..., MEMBS

Card Set 25 is relevant only for layered composite
materials. If MNLAYR#I in Card Set 4, skip Card
Set 25.

25 AEXMIN(I) Minimum proportion of 0' layers for the
(6I.10.3) Ith element.

AEYMIN(I) Minimum proportion of 900 layers for
the Ith element.

AEXYMIN(I) Minimum proportion of +45' layers for
the Ith element.

I = 1,..., MEMBS
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CARD SET PARAMETER DESCRIPTION
{FUWAT}

Card Sets 26 and 27 define grid point coordinates.
The user can choose either a condensed form or a
card per grid point form by giving NCDPND=O or 1
in Card Set 4. Card Set 26 represents the con-
densed form and Card Set 27 the alternate form.
The user should choose one or the other but not
both.

26 X(I) X coordinate of the Ith node.
(6F10.3) Y(I) Y coordinate of the Ith node.

Z(1) Z coordinate of the Ith node.

I - l,..., JOINTS

NOTE: For MM = 2, Z(I) is not input.

27 KX Node Number

(I5, 3FlO.O)

X(I)

Y(1) See CARD SET 26

Z(I)

I = 1,..., JOINTS

Card Set 28 is for defining the boundary degrees
of freedom.

28 IBND(I) Degree of freedom numbers of those
(1415) I = 1,..., NBNDRY nodes which are restrained. For

node K the degree of freedom numbers
are 3*K-2, 3*K-l, and 3*K for MM=3
and 2*K-1, 2*K for M=2.
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CARD SET PARAMETER DESCRIPTION
(FORMAT)

C ard Sets 29 and 30 define the loading on the

structure.

29 NJLODS(I) Number of load components in the Ith

(1415) I 1,..., LOADS loading condition.

30 TFR(J) Value of the load.

3(FlO.O, 215)

IM(J) Direction of the load.
I x direction.

IM(J) y direction.

z direction.

JM(J) Number of the node where the load
J = 1,..., NJLODS(I) is applied.

Card Sets 31 thru 33 define the displacement constraints
on the structure. The options for displacement con-
straints are defined by the parameter LMTDSP on Card
Set 3. IF LMTDSP9O, skip Card Sets 31 thru 33. IF
LMTDSP=l, use only Card Set 31. IF LMTDSPI, use Card
Sets 32 and 33.

31 DEFMAX(J) Absolute value of the displacement
(6FI0.3) J = 1,..., MM constraint in the jth direction for

all nodes.
[-l x direction.

2 y direction.
z direction.

32 NLTDEF Number of displacement constraints.
(1415)

33 TFR(1) Magnitude of the displacement constraint.
3(FlO.O, 215)

IM(I) Direction in which the constraint is
applied.

x direction.
IM(O) (=2 y direction.

=3 z direction.

JM(I) Number of the node where the constraint
I = 1,..., NLTDEF is applied.
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Output for Program OPTSTAT

Output for Program OPTSTAT consists of the following:

1) Untitled echo of CARD SETS 2, 3, 4 and 5.

2) Materials Table from CARD SETS 6, 7 and 11.

3) Element Table from CARD SETS 8-10, 12-23.

4) Untitled echo of CARD SETS 26 and 27.

5) Boundary data, i.e. contents of array IBND (CARD SET 29).

6) Summary of Applied Loads Table.

7) Output from Subroutine POP concerning the distribution of elements
in the stiffness matrix. This information is generated before the
stiffness matrix of the structure is assembled.

(a) Gross Population = total number of elements in the upper
triangle of the matrix.

Net Population = actual population of possible non-zero elements
in the upper triangle of the stiffness matrix. This number would
be correct only if NR is correct in CARD SET 2.

Apparent Population = actual number of elements considered as
non-zero by a given solution scheme. Thus the apparent popula-
tion represents the number of storage locations required for
the stiffness matrix.

(b) Starting Row Numbers for each column - the number of the row
where the first non-zero element occurs in each column.

(c) Number of Diagonal Elements in Single Array Stiffness Matrix.
For each Column I the actual number of elements, ID(I), in the
upper triangular matrix up to and including that column, i.e.

ID(I) = 1(13
2 - j l bj

where bj is the row number given for Column I in (b). Thus
for the last column, ILAST,

ID(ILAST) = Apparent Population
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8) Initial sizes of the elements (CARD SET 19).

9) BASEAE - Scaling parameter based on the total energy in the structure.

BASEAE - Scaling parameter based on displacement constraints.

10) MEMB. NO. - Element number.

SCALING FACTOR - Maximum positive ratio of tension (compression) in
the element to the tension (compression) allowable
over all loading conditions if this ratio is >1.0.

11) Maximum effective stress ratio (if analysis only, i.e. KANLYZE = 1)

12) If maximum sizes of the elements are input, i.e. (MAXSZE = 1)

Scale Factors

DESIRED - Either BASEAE as given in 9) divided by 10
6 or (BASEAE/106 )*

the last scaling factor given in 10).

ACTUAL - Minimum ratio over all the elements of the maximum allowable
size of the element to the relative size of the element which
is < desired scale factor.

RATIO - Desired scale factor/actual scale factor.

CRITICAL MEMBER - Element number from which the actual scale factor was
calculated.

If critical member = 0, either there were no items output in 10) or no actual
scale factor was computed, i.e. Desired scale factor = Actual scale factor.

13) BASE AE - Scaling parameter
Weight of the Structure
Weight of the Membrane Elements
Cycles in Search - Current number of cycles of iteration using the

recursion relation based on displacement gradients.
Structure Number - Number of the current data set (CARD SET 1).
No. of Loads - Number of loading conditions.
Cycle No. - Total number of cycles of iteration.
Weight of the Shear Panels.
Weight of the Bar Elements.

14) STEP REDUCED
If the weight goes up in the displacement mode, the relative sizes of
the elements are reduced.

15) NDUMMY - The number of times the deflection limits have been exceeded.

NUFR - The degree of freedom numbers where the deflection limits have
been exceeded.
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16) Relative Areas of Members - (Absolute thicknesses of the elements
x Young's modulus in psi)/Scaling
parameter.

Output 9) and 10) is repeated for each cycle.

17) Output for each element after the optimization is completed.

(a) MEMBER - Element Number

(b) THICK - Absolute thickness of the resized member.

(c) AREA - Area of the element. For a bar area is length.

(d) TYPE - Type of element (CARD SET 12).

(e) MA, MB, MC, MD - defined in CARD SETS 13, 14, 15, and 16

(f) SIGMA-X (ax), SIGMA-Y (a ), SIGMA-XY (a )-
Stresses in the x-y local coordinates oP'the element.

(g) ESRATIO - Effective stress ratio in the element determined by
the Von Mises Criterion.

The stress output varies per element type.
(i) BAR SIGMA-X only
(ii) TRIANGLE SIGMA-X, SIGMA-Y, SIGMA-XY
(iii) QUADRILATERAL MEMBRANE

The Quadrilateral membrane element is divided into 4 triangles
for analysis. SIGMA-X, SIGMA-Y, SIGMA-XY are for that triangle with
the maximum effective stress ratio. This maximum effective stress
ratio is given by ESRATIO.
(iv) SHEAR PANEL

The Shear Panel is also divided into 4 triangles for analysis.
SIGMA-XY (T XY) Is for that triangle with the maximum effective stress
ratio. This maximum effective stress ratio is given by ESRATIO.

For layered composite elements output (f) is replaced by
(i) (LAM) - The total number of layers.
ii) (THKO) - Total thickness of the layers in the 0* fiber

direction.
(iii) (AEX) - Proportion of fibers in the 00 direction.
(iv) (THK90) - Total thickness of the layers in the 900 fiber

direction.
(v) (AEY) - Proportion of fibers in the 900 direction.
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(h) ALSI - Tension allowable of the element parallel to the 0 fiber
direction.

ALS2 - The ratio of the compression allowable parallel to the 00
fiber direction to ALSI.

4
ALS3 - The ratio of the tension allowable transverse to the 0°

fiber direction to ALS1.

ALS4 - The ratio of the compression allowable transverse to the
00 fiber direction to ALSI.

ALS5 - The ratio of the shear allowable transverse to the 00 fiber
direction to ALS1 (SEE CARD SET 11).

i) ENERGY - Strain Energy in the element.

NOTE: If the number of loading conditions is greater than 1, output
(g) and (I) are given continuously for each load case.

18) The total energy for each loading condition.

19) Output for each node after the optimization is completed.

(a) JOINT - Node Number

(b) X, Y, Z - x, y, and z coordinate of the node.

(c) FORCE-X, FORCE-Y, FORCE-Z - applied forces in the x, y and z
direction.

(d) DISPL-X, DISPL-Y, DISPL-Z - Displacements in the x, y and z
direction.

NOTE: If the number of loading conditions is greater than 1, output (c)
and (d) are given continuously for each load case.

If the problem contains layered composite elements, additional output can
be requested (See CARD SET 3).

20) MEMB - Element No.

Total Number of Layers per element.

The number of layers in each of the fiber directions
(0, 90, +45)

21) Based on the output in 14), AEX, AEY and THICK are recalculated and a
structural analysis is performed. Output 10), 11), 12) and 13) are repeated.
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Design Example

The three spar wing shown in Figure 6 is idealized by membrane

quadrilaterals, shear panels and bars (axial force members). The top

and bottom skins are graphite epoxy layered composite elements with

00, 90 and +450 fibers. The spars and ribs are idealized by aluminum

shear panels. In addition, the top and bottom nodes are connected by

bar elements or posts. The root section of the wing is assumed to be

fixed. The wing is designed for two independent loads. These loading

conditions are generated by simplified pressure distributions represen-

tative of a subsonic, forward-center-of-pressure loading and a supersonic

near-uniform-pressure loading. The detailed distribution of the loading

on the nodes is given in Table 1. The material properties of the graphite

epoxy and aluminum are given in Table 2. The constraints are only on

stresses and minimum sizes. The wing was optimized by OPTSTAT and

ASOP 3(18) The distribution of the composite layers and the thickness

of the spars and webs are given in Figure 7. Figure 7a gives the

composite layer distribution in the wing skins. The top figures were

obtained by OPTSTAT and the bottom figures by ASOP 3. The details of

the ply orientations in 00, 90 and +450 were given in Figure 7b.

Figure 3c gives the material distribution in the substructure. The design

obtained by OPTSTAT weighs approximately 34 lbs. The ASOP 3 wing was

about 40 lbs. (See Figure 7c). There was substantial difference in the

composite material distribution of wing skins obtained by the two programs.

The design obtained by ASOP 3 is heavier and stiffer than that obtained by

OPTSTAT. The difference in the two designs can be attributed to the
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resizing algorithms, methods of calculation of stresses and the failure

criteria in these two programs. The OPSTAT program resizes the elements

by using as energy criterion, while ASOP 3 resizes by a stress ratio

criterion. In addition there are differences in the way stresses are

computed.
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*DECK OPTSTAT
C THE FOLLOWING DIM ARE FOR INTERNAL USE OPTSTAT

DIMENSION AA(3,3),EE(3,3),EK(12,12),EKK(12,12),B(12,12),C(12,12), OPTSTAT
1 XI(5) ,ETA(5) ,MAA(4) ,MBB(4) ,MCC(4) ,TRANG(4) ,IM(6) ,JM(6), OPISTAT
2 TFR(6) ,DEFMAX(6) ,EEK(8,8) ,ALS(5) ,TFFR(4) OPTSTAT

C OPTSTAT
C THE FOLLOWING DIM PERTAIN TO THE NUMBER OF ELEMENTS (MEMBS) OPTSTAT

DIMENSION MA (260) ,MB (260) ,MC (260) ,MD (260) ,NNODES (260) ,AE(260), OPTSTAT
1AAE (260) ,ELENTH (260) ,STRENG (260) OPTSTAT

DIMENSION LAM(260) ,AEX (260) ,AEY (260) ,MYOUNG (260) ,XANG (260), OPTSTAT
1YANG (260) ,ZANG (260) ,ENGX (260) JENGY (260) ,ENGXY (260) ,AAEX (260), OPTSTAT
2AAEY(260) ,AEMNM(260) ,AEMAX(260) ,AEXMIN(260) ,AEYMIN(260), OPISTAT
3AEXYMIN (260) ,NZDEG (260) ,NNDEG (260) ,NFDEG (260) ,LFLAG1 (260), OPTSTAT
4LFLAG2 (260) ,NKIND (260) ,STRNO (260,6) ,STRN9O (260,6),
5STRN45P (260,6) ,STRN45N (260,6)

C OPTSTAT
C THE FOLLOWING DIM PERTAIN TO THE NUMBER OF JOINTS OPTSTAT

DIMENSION X(300) ,Y(300) ,Z(300) OPTSTAT
C OPTSTAT
C THE FOLLOWING DIM PERTAIN TO THE NUMBER OF DEG OF FREEDOM (NN) OPTSTAT

DIMENSION DEFLMT(900) ,ICOL(900) ,IDIAG(900) ,ICOLS(900) ,IDIAGS(900), OPTSTAT
I SK (20000) OPTSTAT

C OPTSTAT
C THE FOLLOWING DIM PERTAIN TO THE NUMBER OF BOUND. COND. (NBNDRY) OPTSTAT

DIMENSION IBND(50) OPTSTAT
C OPTSTAT
C THE FOLLOWING DIM PERTAIN TO THE NUMBER OF LOADING CONDITIONS (L) OPISTAT

DIMENSION NJLODS (6) ,ELEENG (6) ,ENGSTR (6) ,KTR (6) ,EDR (12,6), OPTSTAT
1EDDR(12,6),SX(6),SY(6),SXY(6),SSX(4,6),SSY(4,6), OPTSTAT

2 SSXY(4,6) ,EFSTRS (6) ,EFFSTR(4,6) ,EXM(6) ,SNMAX (6)
DIMENSION ESRTIO(6) ,ELENG (6) ,ENGTOT (6) ,S(12,6) OPTSTAT

C OPTSTAT
C IF THE NUMBER OF LOADING CONDITIONS EXCEED 10, THEN CHANGE THE OPTSTAT
C DIMENSION OF TDRI,TDR2 IN SUBROUTINE RESTOR,ENGG IN SUBROUTINE OPTSTAT
C QLSTRS AND EX,EY,EXY IN SUBROUTINE STRESS OPTSTAT

DIMENSION YOUNGM(20) ,POISON (20) ,RH0l (20) ,ELCNST (50) ,ALSTRS (100) OPISTAT
DIMENSION NUFR(20) ,UDR(200,2), ENGST1(12,6) ,EDR1(12,12) ,ELENG1(20) OPTSTAT
DIMENSION TITLE (8) OPTSTAT

C THE FOLLOWING DIM ARE FR(NN,L) ,DR(NN,L) ,DELTAR(NN,L) ,PDELR(NN,L) OPTSTAT
DIMENSION FR(900,6) ,DR(900,6) OPTSTAT

C OPTSTAT
C OPTSTAT
C THE FOLLOWING DIM IS MDEFEQ(NACTIVE,L) OPTSTAT

DIMENSION MDEFEQ(12,6) ,KDEFEQ(12) OPTSTAT
C OPTSTAT

EQUIVALENCE (SK(l) ,NZDEG(1)) ,(SK(501) ,NNDEG(1)), OPTSTAT
1 (SK(1001) ,NFDEG(1)), (SK(1501) ,LFLAG1(1)), OPTSTAT
2(SK(2001) ,LFLAG2(l)), (SK(2501) ,NKIND(l)) OPTSTAT

C OPTSTAT
C NNMAX MUST BE THE DIMENSION OF FR,DR, ICOL,IDIAG, OPTSTAT
C ICOLS, IDIAGS,DEFLMT OPTSTAT

INTEGER TYPE OPTSTAT
NNMAX = 900 OPTSTAT

C MAXSK MUST BE EQUAL TO OR GREATER THAN THE DIM OF SK OPISTAT
MAXSK=20000 OPISTAT
NACTIVE = 12 OPTSTAT
READ(5,2) NSTR OPTSTAT
KSTR=l OPISTAT

1 READ(5,6)TITLE OPTSTAT
WRITE (6, 6)TITLE OPTSTAT

6 FORMAT(8A10) B-2 OPTSTAT
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READ(5,2)MEMBS, JOINTS,NBNDRY,LOADS,MM,LMTDSP,LMTCCL, INCHES,KIPS, OPTSTAT
1LSTCCL, NR, TAREAS, INSIST, LPRINT OPTSTAT
WRITE(6,2) MEMBS, JOINTS,NBNDRY,LOADS,MM,LMTDSP,LMTCCL, INCHES, OPTSTAT
1 KIPS, LSTCCL, NR, IAREAS, INSIST OPTSTAT

READ(5,2)NMAT,NISOTR,INDANG,LAYERD,NCDPEL,NCDPND,INDMIN,KANLYZE OPTSTAT
1 ,MAXSZE,MNLAYR OPTSTAT
WRITE(6,2)NMAT,NISOTR, INDANC,LAYERD,NCDPEL,NCDPND, INDMIN,KANLYZE OPTSTAT
1 ,MAXSZE,MNLAYR OPTSTAT
READ (5,3) AEMNMM, DINCR,THKLAM, SPRDF OPTSTAT
IF(SPRDF .LT. 0.2)SPRDF=0.5 OPTSTAT
WRITE (6,3) AEMNMM, DINCR ,THKLAM ,SPRDF 0 PTSTAT
ISOTRN=NMAT-NISOTR OPTSTAT
READ(5,3) (YOUNGM(I),POISON(I),RHOI(I), I = 1,NMAT) OPTSTAT
RAD=3 .141592654/180. OPTSTAT
IF(NISOTR .EQ. 0)00 TO 7779 OPTSTAT
KX=2*NISOTR OPTSTAT
READ(5,3) (ELCNST(I) ,I=1,KX) OPTSTAT
IF(INDANG EQ. 1)READ(5,3) (XANG(I) ,I=1,MEMBS) OPTSTAT
IF(INDAN0 .EQ. 0)READ(5,3) (XAN0(I) ,YANG(I) ,ZAN0(I) ,I=1,MEMBS) OPTSTAT
IF(INDAN0 .EQ. 2)READ(5,3)AX,AY,AZ OPTSTAT
IF(INDAN0 .LE. 1)00 TO 7770 OPTSTAT
DO 7777 I=1,MEMBS OPTSTAT
XANG(I)=AX OPTSTAT
YANC(I)=AY OPTSTAT

7777 ZAN0(I)=AZ OPTSTAT
7770 CONTINUE OPTSTAT

DO 7782 I = 1,MEMBS OPTSTAT
IF(INDANG EQ. 1)00 TO 7782 OPTSTAT
YANG(I) = RAD *YAN0(I) OPTSTAT
ZANG (I) =RAD*ZAN0 (I) OPTSTAT

7782 XANG(I) = RAD *XANG(I) OPISTAT
7779 CONTINUE OPTSTAT

KX=5*NMAT OPTSTAT
READ(5,3) (ALSTRS(I), I = 1,KX) OPTSTAT
DO 7781 I = 1,KX OPTSTAT

7781 ALSTRS(I) = 1000.0*ALSTRS(l) OPTSTAT
IF(NCDPEL .EQ. 1)00 TO 7780 OPTSTAT
READ(5,2) (NNODES(I) ,I=1,MEMBS) OPTSTA1
READ(5,2) (MA(I) ,I=1,MEMBS) OPTSTAT
READ(5,2) (MB(I) ,I=1,MEMBS) OPTSTAT
READ (5,2) (MC(I) ,I=1,MEMBS) JPTSTAT
READ(5,2) (MD(I) ,I=1,MEMBS) OPTSTAT
IF(NMAT .GT. 1)READ(5,2) (MYtOUN0(I),I=1,MEMBS) OPTSTAT
IF(LAYERD GCT- 0)READ(5,2) (LAM(I) ,I=1,MEMBS) OPTSTAT
IF(IAREAS EQ. 1)READ(5,3)(AE(I),I=1,MEMBS) OPTSTAT
IF(IAREAS EQ. 1 AND. LAYERD EQ. 1)READ(5,3)(AEX(I),1=1,MEMBS) OPTSTAT
IF(IAREAS .EQ. 1 .AND. LAYERD EQ. 1)READ(5,3)(AEY(I),1=1,MEMBS) OPTSTAT
IF(INDMIN EQ. 1)READ(5,3)(AEMNM(I),1=1,MEMBS) OPTSTAT
00 TO 7785 OPISTAT

7780 CONTINUE OPTSTAT
DO 6000 I=1,MEMBS OPISTAT

6000 READ(5,7790)KX,NNODES(),MYOUNG(),MA()MB(I),MC(I),MD(I),LAM(), OPTSTAT
1AE(I) ,AEX(I) ,AEY(I) ,AEMNM(I) OPTST AT

7785 CONTINUE OPTSTAT
IF(MAXSZE EQ. 1)READ(S,3) (AEMAX(J) ,I=1,MEMBS) OPTSTAT
IF(MNLAYR.EQ.1)READ(5,3) (AEXMIN(I),AEYMN(I),AEXYMIN(I),I=1,MEMBS) OPTSTAT

7790 FORMAT(815,4F10.3) OPTSTAT
WRITE(6, 7791) OPTSTAT

7791 FORMAT(1Hl,///5H MAT,8X,3HEi~,9X,3F22,8X,4HMU2IOX2H 0,9X, OPTSTAT
13HRHO,8X,4HTE:"'S,8X,4HCOMP,8X4HTENS8X4HCOMP,7X,5HSHAR) OPTSIA)
IF(ISOTRN EQ. 0)00 TO 7792 OPISTAT
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DO 7793 I=1,ISOTRN OPTSTAT
KX=S*(I-1)+l OPTSTAT
KY=KX.4 OPTSTAT

7793 WRITE(6,7794)I,YOuNGM(I) ,POISON(I) ,RHO1 (I), (ALSTRS(J) ,J=KX,KY) OPTSTAT
7794 FORMAT(I4,E16.S,12X,E12.5,12X,6El2 .5) OPTSTAT
7792 IF(NISOTR .EQ. 0)00 TO 7795 OPTSTAT

KH=ISOTRN+l OPTSTAT
DO 7796 I=KH,NMAT OPTSTAT
KX=5* (I-1) +l OPTSTAT
KY=KX+4 OPTSTAT
KXX=2* (I-ISOTRN-1) +1 OPTSTAT

7796 WRITE (6,7797)1, YOUN0M (I) ,ELCNST(KXX) ,POISON (I) ,ELCNST(KXX+1), OPTSTAT
iRH0l (I), (ALSTRS(J) ,J=KX,KY) OPISTAT

7797 FORMAT(14,E16.5,9E12.5) OPTSTAT
7795 CONTINUE OPTSTAT

IF (AEMNMM .LE.0.00001)AEMNMM--.01 OPTSTAT
WRITE (6,7798) OPISTAT

7798 FORMAT(1H1,///5H MEMB,5H TYPE,5H MAT,5H MA,5H MB,5H MC, OPTSTAT
ISH MD,5H LAM,10X,2HAE,9X,3HAEX,9X,3HAEY,X,7HMINSIZE8X,4HXANO, OPTSTAT
28X, 4HYAN0, BX ,4HZANO / OPTSTAT
DO 7799 I=1,MEMBS OPISTAT
IF(LAYERD .EQ. 0)00 TO 7802 OPTSTAT
IF(MNLAYR EQ. 1)00 TO 7802 OPTSTAT
IF(LAM(I) MNE. 1)00 TO 7802 OPTSTAT
AEXMIN (I) =THKLAM OPTSTAT
AEYMIN (I) =THKLAM OPTSTAT
AEXYM N (I)= 2. *THKLAM OPTSTAT

7802 CONTINUE OPTSTAT
IF(IAREAS NE. 1)AE(I)=1. OPTSTAT
IF(INDMIN .EQ. 0)AEMNM(I)=AE-MNMM OPTSTAT
IF(NMAT .LE. 1)MYOUNG(I)=l OPTSTAT
IF(INDAN0 MNE. 1)00 TO 7801 OPTSTAT
YANG(I)=0. OPTSTAT
ZANG(I)=O. OPTSTAT

7801 WRITE(6,7800)I,NNODES(I) ,MYOUNG(I) ,MA(I) ,MB(I) ,MC(I) ,MD(I),LAM(I), OPISTAT
1AE(I) ,AEX(I) ,AEY(I) ,AEMNM(I) ,XAN0(I) ,YAN0(I) ,ZANO(I) OPTSTAT

7800 FORMAT(I4,2I5,I6,4I5,E14.5,6EI2.5) OPTSTAT
AEMNM (I)=AEMNM (I) *10. **6 OPTSTAT

7799 CONTINUE OPTSTAT
IF(LAYERD .EQ. 0)00 TO 475 OPTSTAT
IF(IAREAS .EQ. 1)00 TO 475 OPTSTAT
DO 5464 I=1,MEMBS OPTSTAT
IF(LAM(I) .EQ. 0)00 TO 5464 OPTSTAT
AEX(I)=o.25 OPTSTAT
AEY (I) =o.25 13PTSTAT
IF(LAM(I) .LE. 1)00 TO 5464 OPTSTAT
IF (LAM (I) -3) 5465,5466,5467 OPTSTAT

5465 AEX(I)=0.5 OPTSTAT
AEY(I)=o.5 OPTSTAT
00 TO 5464 OPTSTAT

5466 AEX(I)=0. OPTSTAT
AEY(I)=o. OPTsTAT
C0 TO 5464 OPTSTAT

5467 AEX(I)=o.34 OPTSTAT
AEY(I)=o. OPTSTAT
IF(LAM(I) .EQ. 4)00 TO 5464 OPTSTAT
AEX(I)=o. OPTSTAT
AEY(I)=0.34 OPTSTAT

5464 CONTINUE OPTSTAT
475 CONTINUE OPTST AT

IF(NCDPND EQ. 1)00 TO 7783 114OPISTAT
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IF(MM .LT. 3)00 TO 4 OPTSTAT
READ(5,3) (X(I) ,Y(I) ,Z(I) ,I=1,JOINTS) OPTSTAT
GO TO 7784 OPTSTAT

4 READ (5,3) (X(I),Y(I),I=l,JOINTS) OPTSTAT
DO 11 I=1,JOINTS OPTSTAT

11 Z(I)=0.O OPISTAT
GO TO 7784 OPTSTAT

7783 DO 6001 1=1,JOINTS OPTSTAT
6001 READ(5,6002)KX,X(I),Y(I),Z(I) OPTSTAT
6002 FORMAT(I5,3F10.o) OPTSTAT
7784 CONTINUE OPTSTAT

IF(INCHES .EQ. 1)00 TO 9 OPTSTAT
DO 7 I=1,JOINTS OPTSTAT
X(I)=X(I)*12.0 OPTSTAT

7 Y(I)=Y(I)*12.0 OPTSTAT
IF (MM .EQ. 2) GO TO 9
DO 70 I = 1,JOINTS
Z(I) = Z(I)*12.0

70 CONTINUE
9 CONTINUE OPTSTAT

DO 7786 I=1,JOINTS OPTSTAT
7786 WRITE(6,18)I,X(I),Y(I),Z(I) OPTSTAT
18 FORMAT(20X,I10,3F15.5) OPTSTAT

LAST=0 OPTSTAT
WTLAST= 10000000. OPTSTAT
KCOUNT=1 OPTSTAT
NPAGE=0 OPTSTAT
LPCYCL=0 OPTSTAT
LDEFGN=1 OPISTAT
NN=MM* JOINTS OPTSTAT
NM=NN-NBNDRY OPTSTAT
READ(5,2) (IBND(I) ,I=1,NBNDRY) OPTSTAT
WRITE (6,5) OPTSTAT
WRITE(6, 1009) (IBND(I) ,I=1 ,NBNDRY) OPTSTAT
DO 10 I=1,NN OPTSTAT
DO 10 J=1,LOADS OPTSTAT
DR(I,J)=o OPTSTAT

10 FR(I,J)=o OPTSTAT
READ(5, 2) (NJLODS(I),I=1.,LOADS) OPTSTAT
DO 21 J=1,LOADS OPTSTAT
KH=NJLODS (J) OPISTAT

12 IF(KH-3)13,13.14 OPISTAT
13 KX=KH OPTSTAT

GO TO 15 OPISTAT
14 KX=3 OPISTAT
15 READ(5,16) (TFR(I),IM(I),JM(IyI=1I,KX) OPTSTAT

DO 22 I=1,KX OPTSTAT
KY=MM*JMfI) -MM+IM(I) OPISTAT

22 FR(KY,J)=FR(KY,J)+TFR(I) OPTSTAT
KH=KH-KX OPTSTAI
IF(KH)21,21,12 OPTSTAT

21 CONTINUE OPISTAT
DO 50 I = 1,6 OPISTAT
DO 50 J =1,LOADS OPTSTAT

50 S(I,J) = 0.0 OPT STAT
DO 51 I 1,NN,MM OPTSTA
KX = I/MM + 1 OPISTA
DO 51 J =1,LOADS 0MiSIAl
S(1,J) =S(1,J) + FR(I,J) OPISTAI
S(2,J) = (2,J) + FR(I+1,J) OPISTAl
IF (MM EQ. 2) GO TO 56 B-5
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S(3,J) = S(3,J) + FR(I.2,J) OPTSTAT
S(4,J) = S(4,J) - FR(I+1,J)*Z(KX) + FR(I+2,J)*Y(KX) OPTSTAT
S(5,J) = S(5,J) + FR(I,J)*Z(KX) -FR(I+2,J)*X(KX) OPTSTAT

56 S(6,J) = S(6,J) - FR(I,J)*Y(KX) +FR(I+1,J)*X(KX) OPTSTAT
51 CONTINUE OPTSTAT

WRITE (6,52) OPTSTAT
52 FORMAT(///soX,24HSUMMARY OF APPLIED LOADS///) OPTSTAT

WRITE (6,53) OPTSTAT
53 FORMAT(20X,2HFX,15X,2HFY,1X,2HFZ,15X,2HMX15X2HMY,15X, OPTSTAT

12HMZ///) OPTSTAT
DO 54 J = 1,LOADS OPTSTAT
WRITE(6,55) (S(I,J), I = 1,6) OPTSTAT

54 CONTINUE OPTSTAT
55 FORMAT(1OX,6El7 .7) OPTSTAT

IF (LMTDSP - 1) 160,151,153 OPTSTAT
151 READ(5,3) (DEFMAX(I),I=1,MM) OPTSTAT

DO 152 I=1,JOINTS OPTSTAT
KX=MM*(I-1) +1 OPTSTAT
DO 152 J=1,MM OPTSTAT
DEFLMT (KX) =DEFMAX (J) OPTSTAT

152 KX=KX+1 OPTSTAT
GO TO 160 OPTSTAT

153 DO 154 I=1,NN OPTSTAT
154 DEFLMT(I)=1000.0 OPTSTAT

READ (5, 2 ) NLTDEF OPTSTAT
KH=NLTDEF OPTSTAT

155 IF(KH-3) 156,156 ,157 OPTSTAT
156 KX=KH OPTSTAT

GO TO 158 OfPTSTAT
157 KX=3 OPTSTAT
158 READ(5,16 )(TFR(I),IM(I),JM(I),I=1,KX) OPTSTAT

DO 159 I=1,KX OPTSTAT
KY=MM*(JM(I) -1)+IM (I) OPTSTAT

159 DEFLMT (KY) =TFR (I) OPTSTAT
KH=KH-KX OPTSTAT
IF (KH) 160,160,155 OPTSTAT

160 CONTINUE OPTSTAT
IF(KIPS .NE. 1)00 TO 666 OPTSTAT
DO 17 I=1,NN OPTSTAT
DO 17 J=1,LOADS OPTSTAT

17 FR(I,J)=1000.0*FR(I,J) OPTSTAT
666 CONTINUE OPTSTAT

STRAIN=50000./10. **3 OPTSTAT
DO 120 I=1,4 OPTSTAT
MAA(I)=I OPTSTAT
MBB(I)=I+1 OPTSTAT

120 MCC(I)=5 OPTSTAT
MAA(4)=l OPTSTAT
MBB(4)=4 OPTSTAT
CALL POP(MEMBS,JOINTS,MM,MA,MB,MC,MD,NNODES,ICOL,IDIAG,NONZRONR) OPTSTAT
IF(NONZRO .GT. MAXSK)GO TO 1000 OPTSTAT
DO 24 I=1,NN OPTSTAT
ICOLS (I)=ICOL (I) OPTSTAT

24 IDIAGS(I)=IDIAG(I) OPTSTAT
GO TO 422 OPTSTAT

19 DO 122 I=1,NN OPTSTAT
ICOL (I) =ICOLS (I) OPTSTAT

122 IDIAG(I)=IDIAGS(I) OPTSTAT
422 ENGCAP=0 OPTSTAT

IF (KCOUNT NE. 1) GO TO 424 OPTSTAT
WRITE(6,427) B-6 OPTSTAT
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427 FORMAT(//5X,24HINITIAL AREAS OF MEMBERS//) OPTSTAT
WRITE(6,14/) (AE(I),l = 1,MEMBS) OPISIAT
GO TO 426 OPISTAT

424 WRITE(6,148) OPTSTAT
WRITE(6,147) (AE(I) ,I=1,MEMBS) OPTSTAT

426 DO 8 I=1,NONZRO OPTSTAT
8 SK(I)=0 OPTSTAT

DO 400 L = 1,MEMBS OPTSTAT
20 CALL COORD(MA(L),MB(L),MC(L),MD(L),X,Y,Z,AA,XI,ETA,AL,NNODES(L),0) OPTSTAT

CALL PREPAR(AE(L),AEX(L),AEY(L),ALS,ALSTRS,AX,AY,AZ,1.0,1.0, OPTSTAT
1EEK,E1,E2,SM,PMU,ELCNST,ESRTIO,ELENG,ISOTRN,NISOTR,KX,KY,LAM(L), OPTSTAT
2LAYERD, LOADS,MYOUNC (L) ,YOUNGM, POISON, NNODES CL) ,TFR,TFFR ,0) OPTSTAT
IF(NNODES(L) .EQ. 2)00 TO 102 OPTSTAT
DO 80 II=1,KX OPTSTAT
CALL ELSTIC (El, E2,PMU,SM,EE) OPTSTAT
T-THK=TFFR (II) OPTSTAT
IF(TTHK .LE. 0. )GO TO 80 OPTSTAT
IF(NISOTR EQ. 0)00 TO 26 OPTSTAT
IF(MYOUNG(L) .LE. ISOTRN)GO TO 26 OPTSTAT
CALL TRECON(EE,AA,XANG(L) ,YANG(L) ,ZANG(L) ,AX,AY,AZ,INDANC,II) OPTSTAT

26 IF(NNODES(L) .LT. 4)00 TO 27 OPTSTAT
CALL QDRLTL(EK,EKK,TTHK ,ELENTH(L) ,MA(L) ,MB(L) ,MC(L) ,MD(L) ,MAA, OPISTAT
1MBB,MCC,XI, ETA,NNODES(L) ,EE,TRANGO0) OPTSTAT
GO TO 28 OPTSTAT

27 CALL PLSTIF(EK ,TTHK ,ELENTH(L),1,2,3 ,XI,ETA,EE,0.,0) OPTSTAT
28 IF(KX .LE. 1)00 TO 80 OPTSTAT

DO 81 I=1,KY OPTSTAT
DO 81 J=1,KY OPTSTAT

81 EEK(I,J)=EEK(I,J).EK(I,J) OPTSTAT
80 CONTINUE OPTSTAT

IF(KX L-E. 1)00 TO 60 OPTSTAT
DO 40 I=1,KY OPTSTAT
DO 40 J=1,KY OPTSTAT

40 EK(I,J)=EEK(I,J) OPTSTAT
60 CONTINUE OPTSTAT

CALL TRNSFM(EK,AAJB,C,MM,NNODES(L),12) OPTSTAT
GO TO 103 OPTSTAT

102 CALL ELSTIF(AA,B,C,AE(L),MM,AL,E1) OPTSTAT
ELENTH (L) =AL OPTSTAT

103 CALL ASEMBL(SK,C,MA(L) ,MB(L) ,MC(L) ,MD(L) ,MM,IDIAG,NNODES(L) ,12) OPTSTAT
30 FORMAT(/1X,9HBASEAE = ,6El5.5/)

LX = MYOUNC(L)
ENGLTA = AE(L) *(STRAIN**2)*RHO1 (LX) *ELENTH(L)
IF (NNODES (L) G T. 4) ENCLTA=ENGLTA*SPRDF OPTSTAT
ENGCAP=ENGCAP ENGLTA OPTSTAT

*400 CONTINUE OPTSTAT
C CALL PRINTK(SK,IDIAC,NN) OPTSTAT

CALL BOUND2(SK, IBND,NN,NBNDRY, IDIAC, ICOL) OPTSTAT
CALL REDUCE(FR, IBND,NN,NBNDRY,LOADS,NNMAX) OPTSTAT
CALL CAUSS(SK,FR,DR,ICOL,IDIAG,LOADS,NM,NNMAX,0) OPTSTAT
DO 179 I=1,LOADS OPISTAT
ENGSTR(I)=0. OPTSTAT
DO 179 J=1,NM OPTSTAT

179 ENCSTR(I)=ENCSTR(I)+FR(J,I)*DR(J,I) OPTSTAT
IF(LOADS EQ. 1) G0 TO 173 OPISTAT
DO 172 I=2,LOADS OPISTAT
IF(ENCSTR(l) .LT.ENCSTR(I)) ENOSTR(1) =ENCSTR(I) tu.TSTAT

172 CONTINUE OPTSlAT
173 BASEAE=1000.OsSQRT(ENGSTR(1) IENGCAP) OFTSIAT

BASEA=BASEAE/ 10. **6 OPTSIAT
WRITE(6,30)BASEAE B-7 OPTSTAT
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CALL RESTOR (DR, IBND, NN, NBNDRY, LOADS, NNMAX) OPTSTAT
CALL RESTOR (FR, IBND, NN, NBNDRY, LOADS, NNMAX) OPTSTAT
IF(LMTDSP.EQ.0) GO TO 161 OPTSTAT
DRATIO=0 OPTSTAT
DO 176 K=1,2 OPTSTAT
NDEFEQ=0 OPTSTAT
DO 176 I=1,NN OPTSTAT
ADR=0. OPTSTAT
DEFBAE=DEFLMT (I) *BASEAE OPTSTAT
DO 175 J=1,LOADS OPTSTAT
IF (ABS (DR (I,J)) .GT.ADR) ADR=ABS(DR(I,J)) OPTSTAT

175 CONTINUE OPTSTAT
ADR=ADR/DEFBAE OPTSTAT
IF(K-1) 191,191,192 OPTSTAT

191 IF(DRATIO .LT. ADR) DRATIO=ADR OPTSTAT
GO TO 176 OPTSTAT

192 IF((DRATIO-ADR).GT.0.1 )GO TO 176 OPTSTAT
NDEFEQ=NDEFEQ+1 OPTSTAT
IF (NDEFER .GT. NACTIVE) STOP 777 OPTSTAT

176 CONTINUE OPTSTAT
BASEAE=BASEAE* DRATI 0 OPTSTAT
BASEA=BASEA* DRATIO OPTSTAT
LDEFGN=1 OPTSTAT

161 CONTINUE OPTSTAT
WRITE (6, 30) BASEAE OPTSTAT
WEIGHT=0. OPTSTAT
WMEMB =0.0 OPTSTAT
WSHEAR =0.0 OPTSTAT
WBAR = 0.0 OPTSTAT
RATINC=1. OPTSTAT
MXMEMB = 0
WRITE(6,36) OPTSTAT

36 FORMAT(//,5X,9HMEMB. NO. ,5X, 15HSCALING FACTORS/) OPTSTAT
DO 300 L=1,MEMBS OPTSTAT
CALL COORD(MA(L),MB(L),MC(L),MD(L),X,Y,Z,AA,XI,ETA,AL,NNODES(L),0) OPTSTAT
CALL ELFORC(AA,DR,EDR,MM,MA(L) ,MB(L) ,MC(L) ,MD(L) ,NNODES(L) ,LOADS, OPTSTAT
1NNMAX) OPTSTAT
CALL PREPAR(AE(L) ,AEX(L) ,AEY(L) ,ALS,ALSTRS,AX,AY,AZ, 1.0,BASEAE, OPTSTAT
IEEK,E1,E2,SM,PMU,ELCNST,ESRTIO,ELENG,ISOTRN,NISOTR,KX,KY,LAM(L), OPTSTAT
2LAYERD,LOADS, MYOUNG (L) ,YOUNGM, POISON, NNODES (L) ,TFR, TFFR, 1) OPTSTAT
IF(NNODES(L) .EQ. 2)00 TO 213 OPTSTAT
DO 180 II=1,KX OPTSTAT
CALL ELSTIC(E1 ,E2,PMU,SM,EE) OPISTAT
TTHK=TFFR (II) OPTSTAT
IF(TTH< LE. 0. )GO TO 180 OPTSTAT
IF(NISOTR .EQ. 0)00 TO 126 OPTSTAT
IF(MYOUNG(L) .LE. ISOTRN)GO TO 126 OPTSTAT
CALL TRECON(EE,AA,XANG(L) ,YANG(L) ,ZANG(L) ,AX,AY,AZ,INDANG,II) OPTSTAT

126 IF(NNODES(L) .LT. 4)G0 TO 127 OPTSTAT
CALL QDRLTL(EK,EKK,TTHK ,QUAD,MA(L) ,MB(L) ,MC(L) ,MD(L) ,MAA,MBB,MCC, OPTSTAT

iXI, ETA,NNODES(L) ,EE,TRANG,1) OPTSTAT
CALL QLSTRS(EDR,EDDR,XI,ETA,MAA,MBB,MCC,SX,SY,SXY,EFSTRS,EXM,SNMAX
1 ,EE,AX,AY,AZ,ALS,LOADS,SSX,SSY,SSXY,EFFSTR,KTR,EKK,ELEENG
2,NNODES(L))
DO 800 J=1,,LOADS OPTSTAT
EFSTRS (J) =0. OPTSTAT
DO 801 I=1,4 OPTSTAT

801 EFSTRS(J)=EFSTRS(J).TRANG(I)*EFFSTR(I,J) OPISTAT
800 EFSTRS(J)=EFSTRS(J)/QUAD OPTSTAT

00 TO 128 OPTSTAT
127 CALL STRESS(EDR,XI ,ETA, 1,2,3,SX,SY,SXY,EFSTRS, EXM,EE,AX,AY,AZ,ALS,

B-8
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iLOADS, ELEENC,TRIANG, 3) OPTSTAT
128 IF(KX.LE.1) GO TO 180 OPTSTAT

ENCMAX=0. OPTSTAT
DO 802 J=1,LOADS OPTSTAT
ESRTIO (J) =ESRTIO (J) +EFSTRS (J) *TTHK OPISTAT
IF (ELEENO (J) .GT. ENCMAX) ENCMAX=ELEENC (J) OPTSTAT

802 ELENC (J) =ELENC (J) +ELEENC (J) *TTHK*0.5 OPTSTAT
ENCMAX=ENCMAX *TTHK OPTSTAT
IF(II EQ. 1)ENGX(L)=ENCMAX OPTSTAT
IF(II EQ. 2)ENCY(L)=ENCMAX OPTSTAT
IF(II EQ. 3)ENCXY(L)=ENCMAX OPISTAT
IF(II EQ. 4)ENCXT'(L)=ENCXY(L)+ENCMAX OPTSTAT

180 CONTINUE OPTSTAT
IF(KX.LE.1) CO TO 804 OPTSTAT
ENCMAX=0. OPTSTAT
DO 805 J=1,LOADS OPTSTAT
IF (ELENG (J) G T. ENOMAX) ENGMAX=ELENC (J) OPTSTAT
ESRTIO(J) =ESRTIO(J)/(AE(L) )OPTSTAT

805 ENGTOT(J)=ENCTOT(J)+ELENC(J) OPTSTAT
CO TO 299 OPTSTAT

804 CONTINUE OPTSTAT
ENCMAX=0. OPTSTAT
DO 807 J=1,LOADS OPTSTAT
ESRTIO (J)=EFSTRS (J) OPTSTAT
ELEENC(J)=ELEENC(J) *0.5*A,-(L) OPTSTAT
IF (ELEENC (J) CT. ENOMAX) ENCMAX=ELEENC (J) OPTSTAT

807 ENCTOT(J)=ENCTOT(J) +ELEENC(J) OPTSTAT
CO TO 299 OPISTAT

213 CONTINUE OPTSTAT
ENCMAX=0. OPTSTAT
DO 215 K=1,LOADS OPTSTAT
SX(K)= El*(EDR(1,K)-EDR(2,K))/AL OPTSTAT
ESRTIO(K) =-SX (K)/ALS(1) OPTSTAT
IF(SX(K) CT. 0.)ESRTIO(K)=SX(K)/ALS(2) OPTSTAT
ELEEN(K)=(0.5*SX(K)**2/( El))*AL*AE(L) OPTSTAT
IF(ELEENC(K) CT1. ENGMAX)CENCMAX=ELEENC(K) OPISTAT

215 ENCTOT (K)=ENCTOT (K) +ELEENG (K) OPTSTAT
299 CONTINUE OPTSTAT

STRENGk'L) =ErICMAX OPTSTAT
AMAX=O. OPTSTAT
DO 298 J=1,LOADS OPTSTAT
IF(ESRTIO(J) CT. AMAX)AMAX=ESRTIO(i) OPTSTAT

'M CONIINUE OPTS TAT
IF(AMAX CT. 1.)WRITF(6,34)L-,AMAX OPTSTAT
IF(AMAX .LE. 1.)CO TO 297 OPTSTAT
BASEAE=BASEAE *AMAX OPT1STAT
BASEA=BASEA*AMAX OPTSTAT
MXMEMB=L OPTSTAT

297 CONTINUE OPTSTAT
KX=MYOUNG(I ) GPTSTAT
IF (NNODFS(L) EQ. 4 OR. NNODES(L) EQ. 3) WMFMB =WMEMB +OPTSTAI

1AE(L) sELENTH(L) .RHO1 (KV) OKISIlAT
IF (NNODES(L) EQ. 5) WSHEAR = WSHEAR + AE(L)*ELENTH(L)*RHOI(KX) OPISTAT
IF (NNODES(L) EQ. 2) WBAR = WBAR + AE(L)*ELENTH(L)*RHOI(KX) OPTSTAT
WEICHT=WEICHT+AC (L) *ELENTH(L) *RHO1 (KX) OPISTAT
RATINC=RATINC *AMAX OPISiAl

300 CONTINUE OPISTAT
IF(RATINC CT. DINCR)L-DEFGN=0 OPTIAT

34 FORMAT(8X,14,8X,F13.6) 001 STAI
IF(KANLYZE EQ. O)CO TO 404 OPIlAI
BAMAX=BASEA B- OPI STAT
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WRITE (6,403) BAMAX OPTSTAT
403 FORMAT(1OX,33HMAXIMUM EFFECTIVE STRESS RATIO = E13.5) OPTSTAT

BASEA=1. OPISTAT
BASEAE=10. **6 OPTSTAT

404 CONTINUE OPTSTAT
PERMBA=BASEA OPTSTAT
IF(KANLYZE .EQ. 1)G0 TO 402 OPTSTAT
IF(MAXSZE .EQ. 0)00 TO 402 OPTSTAT
DO 401 L=1,MEMBS OPTSTAT
IF(AE(L)*BASEA .LE. AEMAX(L))GO TO 401 OPTSTAT
AX=AEMAX (L) /AE (L) OPTSTATA
IF(AX .GT. PERMBA)GO TO 401 OPTSTAT
PERMBA=AX OPTSTAT
MXMEMB=L OPTSTAT

401 CONTINUE OPTSTAT
AX=BASEA/PERMBA OPTSTAT
WRITE (6,406) BASEA ,PERMBA,X, MXMEMB OPTSTAT

406 FORMAT(5X,13HSCALE FACTORS, SX,1OHDESIRED = Ell.4,SX,gHACTUJAL =,OPTSTAT
1Ell.4,5X,8HRATIO = ,EII.4,SX,18HCRITICAL MEMBER = I10) OPTS T

402 CONTINUE OPTSIAT
BASEA=PERMBA OPTSTAT
BASEAE=BASEA*10. **6 OPTSTAT
WMEMB =WMEMB*BASEA OPTSTAT
WSHEAR =WSHEAR*BASEA OPTSTAT
WBAR = WBAR*BASEA OPTSTAT
WEI CHT=WE I HT *BASEA OPTSTAT
WRITE (6, 116) BASEAE,WEIGHTJWMEMB OPTSTAT
IF(LPCYCL GCE. 1)WRITE(6, 149) LPCYCL OPTSTAT
WRITE(6,143) KSTR,LOADS,KCOUNT,WSHEAR,WBAR OPTSTAT
DO 224 I=1,NN OPTSTAT
DO 224 J=1,LOADS OPTSTAT

224 DR(I,J)=DR(I, J)/BASEAE OPTSTAT
IF(KANLYZE .EQ. 1)00 TO 250 OPTSTAT
IF(LPCYCL .GT. LMTCCL)GO TO 250 OPTSTAT
IF(KCOUNT GT. LSTCCL .AND. LMTDSP .EQ. 0)G0 TO 250 OPTSTAT
IF(INSIST .EQ. 2 .AND. LMTDSP GCT. 0)G0 TO 119 OPTSTAT
IF(KCOUNT .LT. LSTCCL)GO TO 119 OPTSTAT
IF(INSIST .EQ. 2)G0 TO 119 OPTSTAT

C IF(KCOUNT .EQ. 1) G0 TO 113 OPTSTAT
IF(INSIST .EQ. 1 .AND. KCOUNT .LT. LSTCCL)GO TO 113 OPTSTAT
IF(INSIST .EQ. 1 .AND. KCOUNT .EQ. LSTCCL)G0 TO 119 OPTSTAT
IF(LPCYCL GT. LMTCCL)GO TO 250 OPTSTAT
IP(LPCYCL GCE. 1)G0 TO 119 OPTSTAT
IF(KCOUNT GCE. LSTCCL .AND. LMTDSP .EQ. 1)00 TO 119 OPTSTAT
IF(LAST.GE.1) GO TO 112 OPTSTAT
PCTWT= 0.0001*WEIGHT OPTSTAT
IF((WTLAST-WEIGHT) .GT. PCTWT .AND. LPCYCL .EQ. 0)00 T0113 OPTSTAT
IF((WTLAST-WEIGHT) .LT. 0. .AND. LPCYCL .EQ. 0)00 T0114 OPTSTAT

112 IF(LMTDSP .EQ. 0 DOR. LDEFGN .EQ. 0)G0 TO 250 OPTSTAT
LAST=0 OPTSTAT
GO TO 188 OPTSTAT

119 CONTINUE OPISTAT
KSAVE=0 OPTSTAT
IF(WTLAST G0T. WEIGHT)KSAVE=1 OPTSTAT
IF(KCOUNT .LT. LSTCCL .AND. INSIST .LT. 2)00 TO 113 OPTSTAT
IF(LPCYCL .LT. LMTCCL .AND. LMTDSP GT. 0)G0 TO 188 OPTSTAT
IF(WEIGHT .LE. WTLAST)-JO TO 2b0 OPTSTAT

114 DO 182 I=1,MEMBS OPTSTAT
IF(LAM(I) G0T. 0)AEX(I)=AAEX(I) OPTSTAT
IF(LAM(I) .GT. 0)AEY(I)=AAEY(I) OPTSTAT

182 AE (I) =AAE (I) B-10 OPTSTAT
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LAST=L-AST. 1 OPTSTAT
IF(LPCYCL .CE. 1)LPCYCL=LPCYCL+1 OPTSTAT
GO TO 19 OPTSTAT

113 AMAXAE=0 OPTSTAT
DO 177 L=1,MEMBS OPTSTAT
KX =MYOUNG(L)
IF(KSAVE .EQ. 0)00 TO 183 OPTSTAT
AAE(L)=AE(L) OPTSTAT
IF(LAYERD EQ. 0)00 TO 183 OPTSTAT
AAEX CL) =AEX (L) OPTSTAT
AAEY(L)=AEY(L) OPTSTAT

183 CONTINUE (IPTSTAT
STRENO CL) =STRENC (L) /BASEAE OPTSTAT
ENCLTA=AE (L) *ELENTH (L) *(STRAIN**2) *RHO1 (KX)
IF (NNODES (L) G T. 4) ENCLTA=ENCLTA*SPRDF OPISTAT
AE(L)=1000.0*AE(L) *SQRT(STRENC(L)/ENGLTA )OPTSIAT

177 IF(AMAXAE.LT.AE(L))AMAXAE =AE(L) OPTSTAT
KH=0 OPTSTAT
DO 178 I=1,MEMBS OPISTAT
AE(I) =AE(I) /AMAXAE OPTSTAT
IF((AE(I)*BASEAE) GT. AEMNM(I))CO TO 178 OPISTAT
KH=KH. 1 OPTSTAT
AE (I) =AEMvNM (I) /BASEAE OPTSTAT

178 CONTINUE OPTSTAT
IF(KH .LT. MEMBS)CO TO 181 OPISTAT
DO 184 I=1,MEMBS OPTSTAT
AEMNM (I) =AEMNM (1) /10. OPISTAT

184 AE(I)=0.1 OPISTAT
181 IF(MAXSZE EQ. 0)00 TO 174 OPTSTAT

D9 171 L=1,MEMBS OPTSTAT
IF (AE (L) *BASEA G T. AEMAX (L) )AE(L) =AEMAX (L) /BASEA OPTSTAT

171 CONTINUE OPTSTAT
174 CONTINUE OPTSTAT

IF(LAYERD .EQ. 0)00 TO 169 OPTSTAT
CALL LMSIZE (AE, AEX, AEY, BASEAE,BASEA, ENGX,ENCY, ENGXY, ELENTH, OPTSTAT

iLAM, MEMBS ,TFR,AEXMIN, AEYMIN, AEXYMIN,MNLAYR) OPTSTAT
169 CONTINUE OPTSTAT

IF(KSAVE .EQ. 1)WTLAST:-WEIGHT OPTSTAT
KCOUNT=KCOUNT, 1 OPTSTAT
GO TO 19 OPTSTAT

188 CONTINUE OPTSTAT
IF(WEICHT .LE. WTLAST)CO TO 189 OPISTAT
AMAXAE=0. OPTSTAT
DO 190 L=1,MEMBS OPTSTAT
AE (L) =(AE (L) +AAE (L) )/2. OPTSTAT
IF(AE(L) GCT. AMAXAE)AMAXAE=AE(L) OPTSTAT
IF (LAM (L) G T. 0) AEX (L) =(AEX (L) +AAEX (L)) /2. OPTSTAT
IF(LAM(L) CT. 0)AEY(L)=(AEY(L)+AAEY(L))/2. OPTSTAT

190 CONTINUE '1PTSTAT
DO 195 L=1,MEMBS OPTSTAT
AE CL) =AE (L) /AMAXAE OPTSTAT
IF(AE(L)*BASEAE .LT. AEMNM(L))AE(L)=AEMNM(L)/BASEAE OPTSTAT

195 CONTINUE OPTSTAT
WRITE (6, 170) OPTSTAT

170 FORMAT(//5X, 12HSTEP REDUCED//) OPISTAT
KCOUNT=KCOUNT+ 1 OPTSTAT
LPCYCL=LPCYCL.1 OPISTAT
CO TO 19 OPISTAT

189 DO 226 I=1,NN OPISTAT
DO 226 J=1,LOADS OPISTAT

226 DR(I,J)=DR(I,J)*DINCR B-1OPTSTAT



185

KX=0 OPTSTAT
DO 254 I=1,NN OPTSTAT
DO 253 J=1,LOADS OPTSTAT
IF(ABS(DR(I,J)) .LE. DEFLMT(I))GO TO 253 OPTSTAT
KX=KX+1 OPTSTAT
NUFR(KX)=I OPTSTAT
GO TO 254 OPTSTAT

253 CONTINUE OPTSTAT
254 CONTINUE OPISTAT

NDUMMY=KX OPTSTAT
WRITE (6,1012) NDUMMY, (NUFR (I) ,I=1,NDUMMY) OPTSTAT

1012 FORMAT(/,5X,gHDUMMY = ,16,/,5X,4HNUFR/, (10I13))
IF(NDUMMY .EQ. 0)G0 TO 250 OPTSTAT
IF(NDUMMY GCT. NACTIVE)GO TO 1000 OPTSTAT
DO 252 J=1,NDWMMY OPTSTAT
NX=NUFR (J) OPTSTAT
DO 252 I=1,NN OPTSTAT
UDR(I, J)=0. OPTSTAT
IF(I .EQ. NX)UDR(I,J)=1. OPISTAT

252 CONTINUE OPTSTAT
CALL REDUICE (UDR ,IBND, NN, NBNDRY, NDUMMY,NNMAX) OPTSTAT
CALL GAUSSI (SK, UDR, ICOL, IDIAG, NDUMMY, NM,NNMAX) OPTSTAT
CALL RESTOR(UDR ,IBND ,NN,NBNDRY,NDUMMY,NNMAX) OPTSTAT
DO 258 I=1,NDWMMY OPTSTAT
KX=NUFR (I) OPTSTAT
J 1=0 OPISTAT
DO 257 J=1.,LOADS OPTSTAT
IF(ABS(DRQ(X,J)) .LE. DEFLMT(KX))GO TO 257 OPTSTAT
J1=J1+1 OPTSTAT
ENGSTi (I, Ji)=DEFLMT (KX) OPTSTAT
KDEFEQ(I)=Jl OPTSTAT
IF(DR(KX, J))255,255,256 OPTSTAT

255 MDEFEQ(I,Jl)=-J OPTSTAT
GO TO 257 OPTSTAT

256 MDEFEQ(I,Jl)=J OPTSTAT
257 CONTINUE OPTSTAT
258 CONTINUE OPTSTAT

DO 280 L=1,MEMBS OPTSTAT
CALL COORD(MA(L),MB(L),MC(L),MD(L),X,Y,ZAA,XI,ETA,AL,NNODES(L),O) OPTSTAT
CALL ELFORC(AA, DR, EDR,MM,MA(L) ,MB(L) IMC(L) ,MD(L) ,NNODES(L) ILOADS, OPISTAT
1 NNMAX) OPTSTAT
CALL ELFORC(AA,UDR,EDR1,MM,MA(L) ,MB(L) ,MC(L) IMD(L) ,NNODES(L), OPISTAT

iNDLJMMY, NNMAX) OPISTAT

B- 12
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CALL PREPAR(AE(L),AEX(L),AEY(L),ALS,ALSTRS,AX,AY,AZ,1.0,1.0, OPTSTAT
1EEK,E1 ,E2,SM,PMU,ELCNST,ESRTIO,ELENG, ISOTRN,NISOTR,KX,KY,LAM(L), OPTSTAT
2LAYERD,LOADS,MYOUNG(L) ,YOUNOM,POISON,NNODES CL) ,TFR,TFFR,0) OPTSTAT
IF(NNODES(L) EQ. 2)00 TO 1102 OPTSTAT
DO 1180 II=1,KX OPTSTAT
CALL ELSTIC (El, E2,PMU, c,; , EE) OPTSTAT
TTHK=TFFR (II) OPTSTAT
IF(TTHK .LE. 0. )GO TO 1180 OPTSTAT
IF(NISOTR EQ. 0)00 TO 1126 OPTSTAT
IF(MYOUNG(L) .LE. ISOTRN)GO TO 1126 OPTSTAT
CALL TRECON(EE,AA,XANG(L) ,YANC(L) ,ZANG(L) ,AX,AY,AZ,INDANC,II) OPTSTAT

1126 IF(NNODES(L) .LT. 4)00 TO 1127 OPTSTAT
CALL QDRLTL(EK,EKK,TTHK ,QUAD,MA(L) ,MB(L) ,MC(L) ,MD(L) ,MAA,MBB,MCC, OPTSTAT

lXI, ETA,NNODES(L) ,EE,TRANG,2) OPTSTAT
00 TO 1128 OPTSTAT

1127 CALL PLSTIF(EK ,TTHK ,TRIANG, 1,2,3 ,XI,ETA,EE,0.,0) OPTSTAT
1128 IF(KX .LE. 1)00 TO 1180 OPTSTAT

CALL UNITEG(EK, ENGX(L) ,ENGY(L) ,ENGXY(L) ,EDR, EDR , ELENGI, ENGSTI, OPTSTAT
1LOADS,KDEFEQ,MDEFER,NDU)MMY,NACTIVE,NNODES(L), S,STREN0(L) ,II, 1) OPTSTAT
DO 1181 I=1,KY OPTSTAT
DO 1181 J=1,KY OPTSTAT

1181 EEK(I,J)=EEK(I,J)+E-K(I,J) OPTSTAT
1180 CONTINUE OPISTAT

IF(KX LE. 1)00 TO 1103 OPTSTAT
DO 1140 I=1,KY OPTSTAT
DO 1140 J=1,KY OPTSTAT

1140 EK(I,J)=EEK(I,J) OPTSTAT
1160 CONTINUE OPTSTAT

0O TO 1103 OPTSTAT
1102 DO 1105 K=1,LOADS OPTSTAT

S(1,K)=AE(L)* El* (EDR(1,K)-EDR(2,K))/AL OPISTAT
S(2,K)=-S(1,K) OPTSTAT

1105 CONTINUE OPTSTAT
1103 CONTINUE OPTSTAT

CALL UNITE0(EK,ENGX(L) ,ENGY(L) ,ENGXY(L) JEDR,EDR1,ELENG1,ENOST1, OPTSTAT
iLOADS, KDEFEQ,MDEFEQ, NDU)MMY, NACTI VE,NNODES CL), S ,STRENG (L) ,II,0) OPTSTAT

280 CONTINUE OPTSTAT
277 AMAXAE=0. OPTSTAT

DO 275 L=1,MEMBS ORTSTAT
KX = MYOUNG(L)
EN0LTA=AE(L) *ELENTH(L) *(STRAIN**2) *RH01 (KX)
IF (NNODES (L) .01. 4) ENGLTA=ENGLTA*SPRDF OPTSTAT
IF(KSAVE .EQ. 0)00 TO 374 OPTSTAT
AAE(L)=AE(L) OPTSTAT
IF(LAYERD .EQ. 0)00 TO 374 OPTSTAT
AAEX (L) =AEX (L) OPTSTAT
AAEY (L) =AEY (L) OPISTAT

374 CONTINUE OPTSTAT
IF(STRENG(L) .GT. 0.)00 TO 278 OPTSTAT
AE(L)=0. OPTSTAT
GO TO 275 OPTSTAT

278 AE(L)=1000. *AE(L) *SQRT(STRENG(L)/ENGLTA )OPTSTAT
275 IF(AMAXAE .LT. AE(L))AMAXAE=AE(L) OPTSTAT

DO 276 L=1,MEMBS OPTSTAT
AE (L) =AE CL) /AMAXAE OPTS TAT
IF(AE(L)*BASEAE .0T. AEMNM(L))00 TO 276 OPTSTAT
AE (L) =AEMNM (L) /BASEAE OPISTAT

276 CONTINUE OPTS TAT
IF(LAYERD EQ. 0)00 TO 139 OPTSTAT
CALL LMSIZE(AE ,AEX, AEY, I., BASEA, ENOX, ENOY, ENXY, ELENTH, OPTSTAT
ILAM,MEMBS,TFR,AEXMIN,AEYMIN,AEXYMIN,MNLAYR) B-13 OPTSTAT
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139 CONTINUE OPTSTAT
IF(KSAVE EQ. I)WTLAST=WEIGHT OPTSTAT
KCOUNT=KCOUNT. OPISTAT
LPCYCL=LPCYCL+ 1 OPTSTAT
GO TO 19 OPTSTAT

250 CONTINUE OPTSTAT
NPAGE=l OPTSTAT
LINES = 1 OPTSTAT
DO 1501 I=1,LOADS OPISTAT

1501 ENGTOT(I)=0. OPTSTAT
DO 600 L=1,MEMBS OPTSTAT
CALL COORD(MA(L),MB(L),MC(L),MD(L).,X,Y,Z,AA,XI,ETA,ALNNODES(L),0) OPTSTAT
CALL ELFORC (AA, DR, EDR,MM,MA CL) ,MB(L) ,MC CL) ,MD (L) ,NNODES CL) ,LOADS, OPTSTAT
1NNMAX) OPTSTAT
AAE CL) =AE (L) *BASEA OPTSTAT
TYPE = NNODES (L) *10 + MYOUN0 (L) OPTSTAT
IF (MYOUNG CL) .GE. 10)TYPE=NNODES(L) *100.MYOUNG(L) OPTSTAT

86 IF((LINES.LOADS) .LT. 54 .AND. L .GT. 1)00 TO 84 OPTSTAT
LINES=1 OPTSTAT
WRITE C6, 98) NPAGE OPTSTAT
NPAGE=NPAGE. 1 OPTSTAT
WRITE C6,83) OPTSTAT
WRITE (6,85) OPTSTAT

84 CONTINUE OPTSTAT
CALL PREPAR CAE(L) ,AEX(L) ,AEY (L) ,ALS,ALSTRS,AX,AY,AZ,BASEA, 1.0, OPTSTAT
IEEK,E1,E2,SM,PMU,ELCNST,ESRTIO,ELENG,ISOTRN,NISOTR,KX,KY,LAM(L), OPTSTAT
2LAYERD, LOADS,MYOUNG CL) ,YOUNGM, POISON,NNODESCL) ,TFR,TFFR, 1) OPTSTAT
IF(NNODES CL) .EQ. 2)00 TO 513 OPTSTAT
DO 580 II=1,KX OPTSTAT
CALL ELSTIC CEl ,E2,PMU,SM, EE) OPISTAT
TTHK=TFFR CII) OPTSTAT
IF(TTHK .LE. 0. )GO TO 580 OPTSTAT
IF(NISOTR .EQ. 0)00 TO 526 OPTSTAT
IF(MYOUNG CL) .LE. ISOTRN)GO TO 526 OPTSTAT
CALL TRECON(EE,AA,XANG(L) ,YANG(L) ,ZANG(L) ,AX,AY,AZ, INDANG, II) OPTSTAT

526 IFCNNODES(L) .LT, 4)G0 TO 527 OPISTAT
CALL QDRLTLCEK, EKK,T-THK ,QUADMA(L) ,MB(L) ,MC(CL) ,MD(L) ,MAA,MBB,MCC, OPTSTAT
1XI, ETA,NNODES CL) ,EE,TRANG,1) OPISTAT
CALL QLSTRS(EDR, EDDR,XI,ETA,MAAMBB,MCCISX,SY,SXYEFSTRS,EXM,SNMAX
1,EE,AX,AY,AZ,ALS,LOADS,SSX,SSY,SSXY,EFFSTR,KTR,EKK,ELEENG,
2NNODES CL))
DO 700 J=1,LOADS OPTSTAT
IF CII .EQ. 1) STRNO(L,J) = SNMAX(J)
IF (II .EQ. 2) STRN9OCLJ) =SNMAX(J)
IF CII .EQ. 3) STRN4SP(L,J) =SNMAX(J)
IF CII EQ. 4) STRN45N(L,J) =SNMAX(J)
EFSTRS (J) =0. OPTSTAT
DO 501 I=1,4 OPTSTAT

501 EFSTRS (J) =EFSTRS CJ) .TRAN0 CI) *EFFSTR (I, J) OPTSTAT
700 EFSTRS(J)=EFSTRSCJ) /QUAD OPTSTAT

GO TO 528 OPTSTAT
527 CALL STRESS(EDR,XI, ETA,I ,2,3,SX,SY,SXY,EFSTRS,EXM,EE,AX,AY,AZ,ALS,

iLOADS, ELEENG ,TRIANG, 3) OPTSTAT
528 IF(KX.LE.1) 00 TO 580 OPTSTAT

DO 502 J=1,LOADS OPTSTAT
IF CII .EQ. 1) STRNO(LJ) = EXM(J)
IF (II .EQ. 2) STRN9O(L,J) = EXM(J)
IF (II .EQ. 3) STRN4SP(L,J) = EXM(J)
IF (II EQ. 4) STRN45N(L,J) = EXM(J)
ESRTIO (J)=ESRTIO CJ) +EFSTRS(J) *TTHK OPTSTAT

502 ELENG CJ)=ELENGCJ) .ELEENG(J) *TTHK*0. 5 B-14 OPTSTAT
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580 CONTINUE OPTSTAT
IF(KX.LE.1) GO TO 504 OPTSTAT
ADR = (AE(L)*BASEA)/THKLAM OPTSTAT
LAM(L) = ADR OPISTAT
BDR = LAM(L) OPISTAT
IF ((AuR - BOR) .GT. 0.2) LAM(L) = LAM(L) + 1 OPTSTAT
DO 505 J=1,LOADS OPTSTAT
ESRTIO(J) =ESRTIO(J)/(AE(L) *BASEA )OPTSTAT

505 ENCTOT (J) =ENGTOT (J) +ELENG (J) OPTSTAT
GO TO 506 OPTSTAT

504 DO 507 J=1,LOADS OPTSTAT
ELEENC (J) =ELEENG (J) *0. 5*AE (L) *BASEA OPTSTAT

507 ENGTOT (J) =ENGTOT (j)+ELEENG (J) OPTSTAT
506 IF(NNODES(L).LT.4) GO TO 508 OPTSTAT

IF(KX.LE.1) GO TO 509 OPTSTAT
WRITE(6,1871) L,AAE(L) ,QUAD,TYPE,MA(L) ,MB(L) ,MC(L) ,MD(L) ,LAM(L), OPTSTAT
1TFFR(1) ,AEX(L) ,TFFR(2) ,AEY(L) ,ESRTIO(1) ,(TFR(I) ,I=1,5) ,ELEN-J(1) OPTSTAT
IF (KANLYZE EQ. 1) GO TO 46 !IPTSTAT
CALL LAYCALC (L ,AAE(L) ,LAM(L) ,TFFR (l),IFFR (2) ,NZDEG,NNDEG ,NFDEO, OP iFA
1THKLAMJ LFLAG1 ,LFLAG2, NKIND, NCOUNT) OPTSTAT

46 IF(LOADS.ER.l) GO TO 600 OPTSTAT
DO 311 K=2,LOADS OPTSTAT

311 WR1TE(6,194) ESRTIO(K) ,ELENG(K) OPTSTAT
GO TO 600 OPTSTAT

509 CONTINUE OPTSTAT
KX=KTR (1) OPTSTAT
IF (NNODES(L) .EQ. 5) GO TO 650 OPTSTAT
WRITE(6,87) LAAE(,L),QUAD,TYPE,MA(L),MB(L),MC(L),MD(L),SSX(KX,1), OPTSTAT
1SSY(KX,1) ,SSXY(KX,1) ,EFSTRS(1), (TFR(I) ,I=1,5) ,ELEENG(1) OPTSTAT
GO TO 655 OPISTAT

650 WRITE(6,82) L,AAE(L) ,QUAD,TYPE,MA(L) ,MB(L) ,MC(L) ,MD(L), OPTSTAT
1SSXY(KX,1),EFSTRS(l),(TFR(I),I=1,5),ELEENG(l) OPISTAT

655 IF(LOADS .EQ. i)GO TO 600 OPTSTAT
DO 211 K=2,LOAnS OPTSTAT
KX=KTR (K) OPTS TAT
IF (NNODES(L) EQ. 5) CO TO 657 OPTSTAT
WRITE(6,94)SSX(KX,K) ,SSY(KX,K) ,SSXY(KX,K) ,EFSTRS(K) ,ELEENG(K) OPISTAT
GO TO 211 OPTSTAT

657 WRITE(6,90) SSXY(KX,K) ,EFSTRS(K) ,ELEENG(K) OPTSTAT
211 CONTINUE OPTSTAT

GO TO 600 OPTSTAT
508 CONTINUE OPTSTAT

IF(KX.LE.1) GO TO 510 OPTSTAT
WRITE(6,186)L,AAE(L),TRIANG,TYPEMA(L),MB(L),MC(L),LAM(L),TFFR(l), OPTSTAT
1AEX(L) ,TFFR(2) DAEY(L) ,ESRTIO(l), (TFR(I) ,I=1,5) ,ELENG(1) OPTSTAT
IF (KANLYZE EQ. 1) GO TO 48 OPTSTAT
CALL LAYCALC(L,AAE(L) ,LAM(L) ,TFFR(1) ,TFFR(2) ,NZDEG,NNDEG,NFDEG, OPTSTAT
ITHKLAM, LFLAG , LFLAG2, NKIND,NCOUNT) OPISTAT

48 IF(LOADS.EQ.1) GO TO 600 OPTSTAT
DO 312 K=?, LOADS OPTSTAT

312 WRITE(6,194) ESRTIO(K) ,ELENG(K) OPTSTAT
GO TO 600 OPTSTAT

510 CONTINUE OPTSTAT
WRITE(6,88) L,AAE(L),TRIANG,TYPE,MA(L),MB(L),MC(L),SX(l),SY(l), OPISTAT
1SXY(1) ,EFSTRS(l) ,(TFR(IA) I=1,5) ,ELEENG(l) OPTSTAT
IF(LOADS EQ. I)GO TO 600 OPTSTAT
DO 212 K=2,LOADS OPTSIAT

212 WRITE(6,94)SX(K) ,SY(K) ,SXY(K) ,EFSTRS(<) ,ELEENG(K) OPTSTA'r
GO TO 600 OPTSTAT

513 DO 515 K=1,LOADS OPISTAT
SX(K)= El*(EDR(1,K)-EDR(2,K))/AL B-15 OPTSTAT
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EFSTRS (K) =-SX (K) /ALS (1) OPTSTAT
IF (SX (K) G T. 0.) EFSTRS (K) =SX (K) /ALS (2) OPTSTAT
ELEENG (K)=(0.5*SX (K) **2/E1 )*AL*AE(L)*BASEA OPTSTAT

515 ENGTOT (K) =ENGTOT (K) +ELEENG (K) OPTSTAT
WRITE(6,89) L,AAE(L) ,ALTYPEMA(L) ,MB(L) ,SX(1) ,EFSTRS(l) ,TFR(1), OPTSTAT
1TFR (2) ,ELEENG(l) OPTSTAT
IF(LOADS .EQ. 1)00 TO 600 OPTSTAT
DO 214 K=2,LOADS OPTSTAT

214 WRITE (6,93) SX (K) ,EFSTRS (K) ,ELEENG (K) OPTSTAT
600 LINES=LINES+L0AOS+l OPTSTAT
883 FORMAT(1X,4HMEMB,2X,5HTHICK,3X,4HAREA,2X,4HTYPE,lX,2HMA,2X,

1 2HMB,2X,2HMC,2X,2HMD,2X,gHSTRAIN(0) ,2X,1OHSTRAIN(90) ,2X,
2 11HSTRAIN(+45) ,2X,11HSTRAIN(-45))
LINES = 1
DO 6600 L = 1,MEMBS
TYPE = NNODES(L)*10 + MYOUNG(L)
IF ((LINES + LOADS) .LT. 54 .AND. L .GT. 1) GO TO 884
LINES = 1
NPAGE = NPAGE + 1
WRITE (6,98) NPAGE
WRITE (6, 883)

884 CONTINUE
IF (NNODES(L) .EQ. 2) GO TO 6601
IF (NNODES(L) .LT. 4) GO TO 5508
WRITE(6,87) LAAE(L) ,ELENTH(L) ,TYPE,MA(L) ,MB(L) ,MC(L) ,M('(L),

1 STRNO(L,1),STRN9O(L,1),STRN45P(L,1),S1RN45N(L,l)
986 IF (LOADS .EQ. 1) GO TO 6600

DO 2211 K = 2,LOADS
WRITE(6,94) STRNO(L,K) ,STRN9O(L,K) ,STRN45P(L,K) ,STRN45N(L,K)

2211 CONTINUE
GO TO 6600

5508 WRITE(6,88)L,AAE(L),ELENTH(L),TYPE,MA(L),MB(L),MC(L)ISTRNO(L,1),
1 STRN9O(L,1),STRN45P(L,1),STRN45N(L,l)
GO TO 986

6600 LINES = LINES + LOADS + 1
WRITE(8,322) (AAE(L), L = 1,MEMBS)

322 FORMAT(6F10.6)
6601 DO 1503 KL=1,LOADS OPTSTAT
1503 WRITE(6, 1502)KL,ENGTOT(KL) OPTSTAT
1502 FORMAT(///,2oX,39HTHE TOTAL ENERGY FOR LOADING CONDITION ,12,4H IS OPTSTAT

1 ,E12.4) OPTSTAT
LINES=1 OPTSTAT
CALL PRNTDR (PR,DR, X,Y, Z, NN,MM, LOADS, JOINTSNPAGE,NNMAX) OPTSTAT

83 FORMAT(1X,4HMEMB,2X,5HTHICK,3X,4HAREA,2X,4HTYPE,1X,2HMA,2X,2HMB, OPTSTAT
12X,2HMC,2X,2HMD,4X,7HSIGMA-X,5X,1HSIGMA-Y,4X,8HSIGMA-XY,4X, OPTSTAT
27HESRATIO, 6X, 4HALS1 ,6X ,4HALS2,lX, 4HALS3, 1X,4HALS4, 1X,4HALS5, 3X, OPTSTAT
26HENERGY) OPTSTAT

82 FORMAT(/I5,F7.3,Fg.2,5I4,24X,E12.5,2E11 .5,2X,4F5.2,E11 .5) OPTSTAT
85 FORMAT(43X,5H(LAM) ,1X,6H(THKO) ,3X,5H(AEX) ,2X, OPTSTAT

17H(THK9O) ,2X, 5H(AEY)) OPTSTAT
90 FORMAT(65X,E12.5,E11.5,33X,E11.5) OPTSTAT
87 FORMAT(/I5, F7.3,F9.2,514,3El2.5,2Ell.5,2X,4F5.2,EI1.S) OPTSTAT
88 FORMAT(/I5, F7.3,Fg.2,4I4,4X,3E12.5,2E1.5,2X,4F5.2,E11.5) OPTSTAT
89 FORMAT(/I5, F7.3,Fg.2,3I4,8X,E12.5,24X,2E1.5,2X,F5.2,15X,EI1.5) OPTSTAT
93 FORMAT(41X,E12.5,24X,E11.5,33X,El1.5) OPTSTAT
94 FORMAT(41X,3El2.5,El1.5,33X,E11.5) OPTSTAT

187 FORMAT(/15,F7.3,F9.2,5I4,I4,4F8.5,2E11.5,2X,4F5.2,Ell.s) OPTSTAT
186 FORMAT(/I5,F7.3,F9.2,4I4,4X,I4,4F8.5,2E11.5,2X,4F5.2,E11.5) OPISTAT

194 FORMAT(77X,E11.5,33X,E1l.5) OPTSTAT
98 FORMAT(1H1,120X,5HPAGE ,13/) OPTSiAi

IF (KANLYZE .EQ. 1) 00 TO 45 B-16 OPTSTAT
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IF (LPRINT EQ. 0) GO TO 45 OPTSTAT
CALL LAYPR(LAM,NZDEC,NNDEG,NFDEG,LFLAG1 ,LFLAG2, OPTSTAT

1NKIND, NCOUNT, NFAC) OPTSTAT
KANLYZE = 1 OPTSTAT
DO 352 I = 1,MEMBS OPTSTAT
AE(I) = AAE(I) OPTSTAT

352 CONTINUE OPTSTAT
D0 47 1 = 1,NFAC OPTSTAT
L = NKIND(I) OPTSTAT
RNZDEC = NZDEO(L) OPTSTAT
RLAM = LAM(L) OPTSTAT
RNNDEG = NNDEG(L) OPTSTAT
AEX(L) = RNZDEG/RLAM OPTSTAT
AEY(L) =RNNDEG/RLAM OPTSTAT
AE(L) = RLAM*THKLAM OPISTAT

47 CONTINUE OPTSTAT
GO TO 19 OPTSTAT

45 TF(KSTR.EQ.NSTR) GO TO 1000 OPTSTAT
KSTR=-KSTR+ I OPTSTAT
GO TO 1 OPISTAT

1000 CONTINUE OPTSTAT
2 FORMAT(141b) OPTSTAT
3 FORMAT(6FIO.3) OPTSTAT
5 FORMAT(1Hl,///2X,10HBOUNDARIES //)OPTSTAT

16 FORMAT (3(F1O.0,215)) OPTSTAT
1009 FORMAT(IX,;0113) OPTSTAT

116 FORMAT(////,5X,15HBASE AE( ) l ,PE14.6,5X, OPTSTAT
125HWEICH-1 OF THE STRUCTURE = lPE14.6,5X, OPTSTAT
134HWEIGHT OF THE MEMBRANE ELEMENTS = ,E14.6) OPTSTAT

143 -FORMAT( 5X,13HSTRUCTURE NO= J15,9 X,12HNO OF LOADS= ,15 OPTSTAT
1,5X,11HCYCLE NO = ,I5,13X,34HWEIGHT OF THE SHEAR PANELS = OPTSTAT
iEl4.6/,83X,34HWEIGHT OF THE BAR ELEMENTS = E14.6) OPTSTAT

147 FORMAI( 5X,10F12.6) OPTSTAT
148 FORMAT(// 5X,25HRELATIVE SIZES OF MEMBERS//) OPTSTAT
149 FORMAT(52X,19HCYCLES IN SEARCH = ,T5) OPTSTAT

STOP Gi'TSTAT
END OPTSTAT

*DECK LMSILE
SUBROUTINE LMSIZE(AE,AEX,AEY,BASEAE,BASEA,ENGX,ENGYENGXYELENTH, LMSIZE
1LAM,MEMBS,TFR,AE-XMIN,AEYMIN,AEXYMIN,MNLAYR) LMSIZE
DIMENSION AE(l),AEX(l),AEY(1),ENGX(1),ENCY(l),ENGXY(l),ELENTH(l), LMSIZE

1LAY(l ' ,TFR(6),AEXMiN(l),AEYMIN(l),AEXYMIN(l) LMSIZE
DO 168 L=I,MEMBS LMSIZE
IF(LAM(L) EQ. 0)00 TO 168 LMSIZE
AMAX=0. LMSIZE
DO 167 I=1,3 LMSIZI
TFR(I)=o. LMST ZE
IF(I-2) 162,163,164 LMSizE

162 AX=AEX(L) -ELENTH(L) LMSIZE
AY=FNCX ([-) /EASEAE LMSI'E
AZ=AEX (L) LMSIZE
CO TO 165 LMSIZE

163 AX=AEY(L) *ELENT-H(L) LYSIZE
AY=ENCY (L-)/BASEAE L.MSI Ni
AZ=AEY (L) LMS I N
GO TO 165 LMSIZE

164 AZ=(1.0 -AEX(t)-AEY(L)) LMSIZE
AX=Al-FI-ENTH(l-) LMSIZE
AY=FNGXY(L) /BAS[A[ MS!

165 IF(A II. T 0.0000 I)GU .2 L~
31 FORMAI(15,1OE12 4) LMSIZE
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TFR (I) =1000. *AZ*SQRT(AY/AX) LMSI ZE
AMAX=AMAX.TFR (I) LMSIZE

167 CONTINUE LMSIZE
DO 166 I=1,3 LMSIZE

166 TFR(I)=TFR(I)/AMAX LMSIZE
IF(AEX(L) GCT. 0.0000I)AEX(L)=TFR(1) LMSIZE
IF(AEY(L) CT. 0.00001)AEY(L)=TFR (2) LMSIZE

168 CONTINUE LMSIZE
DO 170 L=1,MEMBS LMSIZE
IF(LAM(L) .EQ. 0)G0 TO 170 LMSIZE
AX=AEX (L) *AE CL) *BASEA LMSIZE
AY=AEY (L) *AE (L) *BASEA LMSIZE
AZ=0.5*(1 .-AEX(L)-AEY(L))*AE(L)*BASEA LMSIZE
IF(AX .LT. AEXMIN(L))AX=AEXMIN(L) LMSIZE
IF(AY .LT. AEYMIN(L))AY=AEYMIN(L) LMSIZE
IF(AZ .LT. .5*AEXYMIN(L))AZ=.S*AEXYMIN(L) LMSIZE
AE (L)=(AX+AY+2. *AZ) /BASEA LMSIZE
AEX (L) =AX/ (AE (L) *BASEA) LMSIZE
AEY (L)=AY/ (AE (L) *BASEA) LMSIZE

170 CONTINUE LMSIZE
RETURN LMSIZE
END LMSIZE

*DECK UNITEG
SUBROUTINE UNITEC(EK,EGX,EGY,EGXYEDR,EDR1,ELG1 ,EGST1,LD,KDQ,MDR, UNITEG
1NDMY,NACT,k-ND,S,STR0, II, INDX) UNITEC
DIMENSION EK(12,12) ,EGST1(NACT,LD), EDR(12,LD) ,EDR1(8,NACT), UNITEG
1ELGI(l), KDR(l),MDQ(NACT,LD),S(12,LD) UNITEG
IF(NND EQ. 2) GO TO 10 UNITEG
KX=8 UNITEG
IF(NND EQ. 3) KX=6 UNITEG
DO 9 K=1,LD UNITEG
DO 8 I=1,KX UNITEG

S(I,K)=0. UNITEG
DO 8 J=1,KX UNITEG

8 S(I,K)=S(I,K)+EK(I,J)*EDR(J,K) UNITEG
9 CONTINUE UNITEG
10 ADR=O. UNITEG

DO 20 IN1,NDMY UNITEG
KF=KDQ (I) UNITEG
iF(KF EQ. 0) GO TO 20 UNITEG
DO 19 J=1,KF UNITEG
K X='D Q (I, J) UNITEG
KY=l UNITEG
IF(KX GT. 0) GO TO 17 UNITEG
K X= -KX UNITEG
KY=-l UNITEG

17 ELG1(J)=O. UNITEG
KH=8 UNITEG
IF(NND EQ. 3) KH=6 UNITEG
IF(NND EQ. 2) KH=2 UNITEG
DO 18 K=1,KH UNITEG

18 ELGI (J)=ELG1(J).S(K,KX)*EDR1(K,I) UNITEG
ELG1 (J)=ELG1 (J) *KY UNITEG

19 IF(FLCI(J) .GE. 0.) ADR=ADR+ELG1(J)/EGST1(I,J) UNITEG
20 CONTINUE UNITEG

STRG=ADR UNITEG
IF(INDX -EQ. 0) RETURN UNITEC
IF(II .EQ. 1) EGX=ADR UNITEG
IF(II .EQ. 2) EGY=ADR UNITEG
IF(II Eq. 3) EGXY=ADR UNITEG
IF(II EQ. 4) EGXY=EGXY4ADR B-18 UNITEG
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RETURN UN ITEG
END UNITEG

*DECK PREPAR
SUBROUTINE PREPAR(AE,AEX,AEY,ALS,ALSTRS,AX,AY,AZ,BA,BAE,EEK,E1 ,E2, PREPAR
1SM,PMUELCNSTDESRTIO,ELENG,ISO,NISO,KX,KY,LAM,LAYERD,LD,MYG,YGM, PREPAR
2POISON,NND,TFR,TFFR, INDEX) PREPAR
DIMENSION ALS(5) ,ALSTRS(l) ,EEK(8,8) ,ELCNST(1) ,ESRTIO(l), PREPAR
1ELENG(l) ,YGM(1) ,TFR(1) ,TFFR(4) ,POISON(1) PREPAR
KX=MYG PREPAR
E1=YGM (KX) PREPAR
E2=El PREPAR
PMU=POISON (KX) PREPAR
SM=El/(2.*(1 .+PMU)) PREPAR
IF(INDEX EQ. 0)00 TO 20 PREPAR
AX=l. PREPAR
AY=0. PREPAR
AZ=0. PREPAR
DO 174 J=1,LD PREPAR
ELENG (J) =0. PREPAR

174 ESRTIO(J)=0. PREPAR
KY=5* (KX-1) PREPAR
DO 1504 I=1,5 PREPAR
KY=KY+ 1 PREPAR

1504 ALS (I) =ALSTRS (KY) *BAE PREPAR
TFR (1) =ALS(1) PREPAR
DO 216 I=2,5 PREPAR

216 TFR(I)=ALS(I)/ALS(1) PREPAR
IF (LAM EQ. 0) GO TO 20 PREPAR
ALS (3) =100000.*BAE PREPAR
ALS (5) =ALS (3) PREPAR
ALS(4) = ALS(3) PREPAR

20 IF(NND .EQ. 2)00 TO 400 PREPAR
KX=0 PREPAR
IF(NIS0 GT. 0)KX=MYG-ISO PREPAR
IF(KX .LE. 0)00 TO 65 PREPAR
KY=2. (KX-1) +1 PREPAR
E2=ELCNST (KY) PREPAR
SM=ELCNST (KY+l) PREPAR

~5CONTTP4UE PREPAR
TFFR(1)=AE *BA PREPAR
KX=4 PREPAR
IF(LAYERD .GT. 0)00 TO 171 PREPAR
KX=1 PREPAR
GO TO 400 PREPAR

171 IF(LAM .EQ. 0)KX=1 PREPAR
IF(MYG .L.E. ISO)KX=1 PREPAR
IF(KX .LE. 1)00 TO 400 PREPAR
IF(INDEX .EQ. 1)00 TO 150 PREPAR
KY=2*NND PREPAR
IF(NND GT. 4)KY=8 PREPAR
DO 151 I=1,KY PREPAR
DO 151 J=1,KY PREPAR

151 EEK(I,J)=0. PREPAR
150 TFFR(1)=AEX*AE*BA PREPAR

TFFR (2) =AEY*AE*BA PREPAR
TFFR(3)=AE*BA (1. -AEX-AEY)/2. PREPAR
TFFR (4) =TFFR (3) PREPAR

400 IF(INDEX EQ. 0)RETURN PREPAR
E1=E1*10.* & PRFPAR
E2 =E2*10.**6 PREPAR
SM=SM*10.**6 B-19 PREPAR
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RETURN PREPAR
END PREPAR

*DECK GAUSSi
SUBROUTINt- GAUSS1(A, D,IC,ID,L,N,NN) GAUSSi

DO 4., K=1,L GAUSS1
1)0 30 I=1,N GAUSSI
11=I-1 GAUSS1
IF(I1 EQ. 0) GO TO 30 GAUSS1
DO 20 J=1,11 GAUSSI
IF(IC(I) .GT. J)GO TO 20 GAUSS1
IX=ID(I)-I+J GAUSS1
D(I,K)=D(I,K)-A(IX)*D(J,K) GAUSS1

20 CONTINUE GAUSS1
30 CONTINUE GAUSS1
40 CONTINUE GAUSS1

DO 70 I=1,N GAUSS1
KX=ID(I) GAUSS1
DO 70 K=-1,L GAUSS1

70 D(I,K)=D(I,K)/A(KX) GAUSSI
DO 90 K=1,L GAUSS1
I X=N GAUSS1
DO 90 I=2,N GAUSSi
IX=IX-1 GAUSS1
I1=1-1 GAUSS 1
KX=IX GAUSS1
DO 80 J=1,11 GAUSSI
KX=KX+1 GAUSSI
IF(IC(KX) GT. IX)GO TO 80 GAUSS1
KY=ID(KX) -KX+IX GAUSS1
D(IX,K)=D(IX,K)-A(KY)*D(KX,K) GAUSS1

80 CONTINUE GAUSS1
90 CONTINUE GAUSS1

GO TO 110 GAUSS1
100 WRITE(6,120) GAUSS1
120 FOR'AAT(///2X,21HSTRUCTURE IS UNSTABLE//f) GAUSS1
110 RETURN CAUSS1

END GAUSS 1
*DECK POP

SUBROUTINE POP(MMB,JN,MM,MA,MB,MC,MD,KTYPE,IC,ID,NZ,NR) POP
DIMENSION MA(1),MB(l),MC(1),MD(1),IC(1),ID(1),KTYPE(1) POP
IX(I,J)=I*(J-1)*+PO
NZ =0 POP
NN=MM*jN POP
NET=0 POP
DO 10 I=1,NN POP

10 IC(IJ=NN POP
DO 50 L=1,MMB POP
NNeDFS=2 POP
ITI=0 POP
KX=IX(MM,MA(L)) POP
KY=IX(MM,MB(L)) POP

15 IF(IC(KY) 1LT. KX) GO TO 18 POP
DO ig I=1,MMPO
IC (KY) =KX POP

19 K'Y=KY+1 POP
18 IF(KTYPE(L)-3)20,16,17 POP
16 IF(ITRI .EQ. 1)GO TO 20 POP

KY=IX(MM,MC(L)) POP
ITRI=1 -2 POP
NNODES=3 ~ 0POP
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GO TO 15 POP
17 IF(ITRI EQ. 2)00 TO 20 POP

IF(ITRI .EQ. 1)00 TO 14 POP
KY=IX(MM,MC(L)) POP
ITRI=ITRI+l POP
NNODES=4 POP
GO TO 15PO

14 KY=IX(MM,MD(L)) POP
ITRI=ITRI+l POP
GO TO 15 POP

20 NET=NET+(MM**2) *((NNODES* (NNODES-1))/2) POP
50 CONTINUE POP

NET=NET- (MM**2) *NR POP
DO 30 I=1,NN,MM P OP
IF(IC(I) .LT. 1)00 TO 30 POP
KX=I POP
DO 25 J=1,MM POP
IC(KX)=I POP

25 KX=KX.1 POP
30 CONTINUE POP

DO 40 I=1,NN POP
NZ=NZ+ (I-IC (I) .1) POP

40 ID(I)=NZ POP
KX=(NN* (NN.1))/2 POP
NET=NET+ (MM* (MM+1) *JN) /2 POP
WRITE (6,2) POP
WRITE(6,3) KX,NET,NZ POP
WRITE(6,4) POP
WRITE(6,5) (IC(I) ,I=1,NN) POP
WRITE(6,6) POP
WRITE(6,5) (ID(I) ,I=1,NN) POP

2 FORMAT(lH1 ,////20X,16HOROSS POPULATION,4X,14HNET POPULATION, POP
14X,19HAPPARENT POPULATION///) POP

3 tORMAT(18X,I14,Il8,I22//) POP
4 FORMAT(//2X,36HSTARTING ROW NUMBERS FOR EACH COLUMN///) POP
5 FORMAT(5X,1o112) POP
6 FORMAT(//2X,62HNUMBERS OF DIAGONAL ELEMENTS IN SINGLE ARRAY STIFFN PO

lESS MATRIX I/)P0
RETURN POP
END POP

*DECK COORD
SUBROUTINE COORD(K1,K2,K3,K4,X,Y,Z,AA,XI,ETA,AL,NND,NO) COORD
DIMENSION X(l),Y(1),Z(1),AA(3,3),AB(3),XI(5))ETA(5) COORD
XCOMP=X (K2) -X(Ki) COORD
YCOMP=Y (K2) -Y(Ki) COORD
ZCDMP=Z(K2) -7(Ki) COORD
AL=SQRT (XCOMP**2+YCOMP**2+ZCOMP**2) COORD
AA(1 ,1)=XCOMP/AL COORD
AA(1,2)=YCOMP/AL COORD
AA (1 ,3) =ZCOMP/AL COORD
IF(NND .LT. 3)RETURN COORD
XCOMP=X (K3) -X(Ki) COORD
YCOMP=Y(K3) -Y(K1) COORD
ZCOMP=Z(K3) -Z(KI) COORD
AL=SQRT (XCOMP**2+YCOMP**2.ZCOMP**2) COORD
AB(1)=XCOMP/AL COORD
AB(2)=YCOMP/AL COORD
AB (3) =ZCOMP/AL COORD
AL=SQRT((AA(1 ,2)*AB(3)-AA(1,3) -AB(2))**2.(AA(1 ,3)*AB(1) COORD
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1AA(1,2)*AB(2)+(AA(1,2)**2)*AB(l))/AL CO00RD
AA(2,2)=((AA(1,1)**2) *AB(2)-AA(1,1) *AA(1,2) *AB(1)-AA(1 ,2)* COORD

2AA(1 ,3)*AB(3)+(AA(1,3)**2)*AB(2))/AL COORD
AA(2,3)=((AA(1,2)**2)*AB(3)-AA(1,2) *AA(1,3)*AB(2)-AA(1,1) * COORD

3AA(1,3)*AB(1).(AA(1,1)**2) *AB(3))/AL COORD
IF(ND .EQ. 1)RETURN COORD
XI(1)=0.0 COORD
ETA (1) =0.0 COORD
XI (2)=(X(K2) -X(K1)) *AA(1 ,1) + Y (K2) -Y(Kl)) *AA (1,2) +(Z (K2) -Z(K1)) *AA COORD

1(1,3) COORD
ETA(2)=0.0 COORD
XI (3)=(X(K3)-X(K1)) *AA(1,1).(Y(K3)-Y(Kl)) *AA(1,2) +(Z(K3) -Z()) *AA COORD

1(1,3) COORD
ETA(3)=(X(K3)-X(K1))*AA(2, 1) +(Y(K3)-Y(K1))*AA(2,2)+ (Z(K3)-Z(K1)) *A COORD

1A(2,3) COORD
IF(NND .LE. 3)RETURN COORD
XI (4)=(X(K4) -X(KI)) *AA(1, 1)+(Y(K4)-Y(K1)) *AA(1,2)4.(Z(K4)-Z(K1)) *AA COORD

1(1,3) COORD
ETA(4)=(X(K4)-X-(Kl))*AA(2, 1).(Y(K4)-Y(Kl))*AA(2,2) .(Z(K4)-Z(Kl))*A COORD

1A(2,3) COORD
XI (5) =(XI (2) +XI (3) .XI (4)) /4.0 COORD
ETA (5)=(ETA (3) tETA (4))/4 .0 COORD
RETURN COORD
END COORD

*DECK QDRLTL
SUBROUTINE QDRLTL (EK, EKK,TH, QUAD,MA,MB,MC,MD,MAA,MBB,MCC,XI, ETA, QDRLTL
iNNODES, EE,TRANG,NO) QDRLTL
DIMENSION EK(12,12),EKK(12,12),MMA(l),MBB(l),MCC(1),XI(S),ETA(s5) QDRLTL
1,EE(3,3) ,TRANG(l) QDRLTL
DO 125 I=1,12 QDRLTL
DO 125 J=1,12 QDRLTL

125 EK(I,J)=0. QDRLTL
NNRM=O QDRLTL
SHR=1 .0 QORLTL
IF(NNODES .LE. 4)GO TO 108 QDRLTL
NNRM=l QDRLTL
IF(NNODES .EQ. 5)GO TO 108 QDRLTL
IF(NNODES - 7)104,105,106 QDRLTL

104 XCOMP=XI (3) -XI (2) QDRLTL
YCOMP=ETA (3) -ETA (2) QDRLTL
GO TO 107 QDRLTL

105 XCOMP=XI (4) -XI (3) QDRLTL
YCOMP=ETA (4) -ETA (3) QDRLTL
GO TO 107 QDRLTL

106 XCOMP=XI (4) -XI (1) QDRLTL
YCOMP=ETA (4) -ETA(1) QDRLTL

107 ALL=SIQRT(XCOMP**2+YCOMP**2) QDRLTL
SHR=XCOMP/ALL QDRLTL

108 QUAD=0. QDRLTL
DO 130 I=1,4 QDRLTL
CALL PLSTlF(EKK,TH,TRIANG,MAA(I) ,MBB(I) ,MCC(I) ,XI,ETAEE,SHR,NNRM) QDRLTL
QUAD=QUAD.TRIANG QDRLTL
TRANG (I) =TRIANG QDRLTL

130 CALL SUM(EK,EKK,MAA(I),MBB(I),MCC(I)) QDRLTL
CALL CONDNS(EK,EKK,MA,MB,MC,MD,NO) QDRLTL
RETURN QDRLTL
END QDRLTL

*DECK PLSTIF
SUBROUTINE PLSTIF(EKK,TH,TRIANC,MA,MB,MC,X,Y,EE,SHR,NONORM) PLSTIF
DIMENSION EKK(12,12),X(1),Y(1),EE(3,3), PLSTIF
1 U(6), A(3,3),E1(3),E2(3),AX(3) B-22 PLSTIF
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CALL CRAMER(A,TRIANG,X,Y,MA,MB,MC) PLSTIF
DO 20 1 1,6 PLSTIF
DO 15 II 1,6 PLSTIF

15 U(II) =0.0 PLSTIF
U(I) =1.0 PLSTIF
El~l) = A(1,1)*U(1) + A(1,2)*U(3) + A(1,3)*U(5) PLSTIF
E1(2) =A(2,1)*U(2) + A(2,2)*U(4) + A(2,3)*U(6) PLSTIF
E1(3) =A(1,1)*U(2) + A(1,2)*U(4) + A(1,3)*U(6) + A(2,1)*U(1) + PLSTIF
1 A(2,2)*U(3) + A(2,3)*U(S) PLSTIF
DO 20 J =1,6 PLSTIF
DO 16 11 1,6 PLSTIF

16 U(II) =0.0 PLSTIF
U(J) 1.0 PLSTIF
E2(1) =A(1,1)*U(l) + A(1,2)*U(3) + A(1,3)*U(5) PLSTIF
E2(2) =A(2,1)*U(2) + A(2,2)*U(4) + A(2,3)*U(6) PLSTIF
E2(3) =A(1,1)*U(2) + A(1,2)*U(4) + A(1,3)*U(6) *A(2,1)*U(1) + PLSTIF

1 A(2,2)*U(3) + A(2,3)*U(S) PLSTIF
EKK(I,J) = 0.0 PLSTIF
IF (NONORM EQ. 0) GO TO 14 PLSTIF
AX(1)=SHR**2 PLSTIF
AX(2)=2.*AX(l)-1. PLSTIF
AX(1)=2.*SQRT((1 .-AX(l))*AX(1)) PLSTIF
El (3)=(E1 (2) -El (1)) *AX(1) +E1 (3) *AX(2) PLSTIF
E2 (3) =(E2 (2) -E2 (1)) *AX (1) .eE2 (3) *AX (2) PLS'ilF
El(l) =0.0 PLSTTF
E1(2) =0.0 PLSTIF
E2(1) =0.0 PLSTIF
E2(2) = 0.0 PLSTIF

14 DO 18 K = 1,3 PLSTIF
AX(K) = 0.0 PLSTIF
DO 17 L = 1,3 PLSTIF

17 AX(K) = AX(K) + EE(K,L)*E2(L) PLSTIF
18 CONTINUE PLSTIF

DO 19 K = 1,3 PLSTIF
19 EKK(I,J) = EKK(I,J) + El(K)*AX(K) PLSTIF

EKK(I,J) = EKK(I,J)*TH*TRIANG PLSTIF
20 CONTINUE PLSTIF

DO 30 I = 1,5 PLSTIF
IX = I + 1 PLSTIF
DO 30 J = IX,6 PLSTIF

30 EKK(J,I) = EKK(I,J) PLSTIF
RETURN PLSTIF
END PLSTIF

*DECK CRAMER
SUBROUTINE CRAMER(A,TRIANG,X,Y,MA,MB,MC) CRAMER
DIMENSION A(3,3),X(1),Y(1) CRAMER
TRIANG = X(MA)*(Y(MB) - Y(MC)) -Y(MA)*(X(MB) -X(MC)) CRAMER

1(X(MB)*Y(MC) - X(MC)*Y(UB)) CRAMER
A(l,1) = Y(MB) - Y(MC) CRAMER
A(2,1) = X(MC) - X(MB) CRAMER
A(3,1) = X(MB)*Y(MC) - X(MC)*Y(MB) CRAMER
A(1,2) = Y(MC) - Y(MA) CRAMER
A(2,2) = X(MA) - X(MC) CRAMER
A(3,2) = X(MC)*Y(MA) - X(MA)*Y(MC) CRAMER
A(1,3) = Y(MA) - Y(MB) CRAMER
A(2,3) = X(MB) - X(MA) CRAMER
A(3,3) = X(MA)*Y(MB) - X(MB)*Y(MA) CRAMER
DO 10 I = 1,3 CRAMER
DO 10 J = 1,3 CRAMER

10 A(I,J) = A(I,J)/TRIANG CRAMER
TRIANG =(A85(TRIANG))/2.0 B-23 CRAMER



197

RETURN CRAMER
END CRAMER

*DECK SUM
SUBROUTINE SUM(EK, EKK,MA,MBMC) SLA4
DIMENSION EK(12,12) ,EKK(12,12) ,NA(3) SUM
M=2 SLIM
NA(1)=2*(MA-1)+1 SUMW
NA(2)=2* (MB-i) +1 SLIM
NA(3) =2* (MC-1) +1 SUM
I H=0 SUIM
DO 100 I=1,6 sum
JH=0 sum
IF(I .LE. IH)GO TO 30 sum
IH=IH+M sum
IHH=IH/M sum
KX=NA (IHH) sum

30 DO 90 J=1,6 SUM
IF(J .LE. JH)GO TO 60 sum
JH=JH+M SUM
IHH=JH/M sum
KY=NA (IHH) sumd

B-24
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60 EK(KX,KY)=EK(KX,KY)+EKK(I,J) sum
90 KY=KY+l SUM
100 KX=KX+l SUM

RETURN SUM
END SUM

*DECK CONDNS
SUBROUTINE CONDNS(EK,EKK,MA,MBMC,MD,NO) CONDNS
DIMENSION EK(12,12) ,EKK(12,12) CONDNS
DO 5 1=1,8 CONDNS
DO 5 J=1,8 CONONS

5 EKK(I,J)=0. CONONS
DET=EK(9,9)*EK(1o,10)-EK(9,10)**2 CONONS
AX=EK(9,9) CONDNS
EK (9,9) =EK (10, 10) IDET CONDNS
EK (10, 10)=AX/DET CONDNS
EK(9,10)=-EK(9,10) /DET CONONS
EK(10,9)=EK(9,10) CONDNS
KX=0 CONONS
DO 10 I=9,10 CONDNS
KX=KX+1 CONONS
DO 10 J=1,8 CONDNS
DO 10 K=9,10 CONONS

10 EKK(KX, J)=EKK(KX,J).EK(I,K)*EK(K,J) CONDNS
IF(NO .EQ. 1)RETURN CONDNS
KX=0 CONDNS
DO 20 I=9,10 CONDNS
KX=KX.1 CONONS
DO 20 J=1,8 CONDNS
EK(I,J)=EKK(KX, J) CONDNS

20 EKK(KX,J)=o CONONS
DO 30 I=1,8 CONDNS
DO 30 J=1,8 CONDNS
DO 30 K=9,10 CONDNS

30 EKK(I,J)=EKK(I,J).EK(I,K)*EK(K,J) CONDNS
DO 40 I=1,8 CONDNS
DO 40 J=1,8 CONDNS

40 EK (I, J) =EK (I, J) -EKK (I, J) CONDNS
IF(NO .EQ. 2)RETURN CONDNS
IF(MC .LT. MB)CALL CHANGE(EK,3,5,4,12,12,0) CONDNS
IF(MD .LT. MB)CALL CHANGE(EK,3,7,4,12,12,0) CONONS
IF(MD .LT. MC)CALL CHANGE(EK,5,7,4,12,12,0) CONONS
RETURN CONONS
END CONDNS

*DECK CHANGE
SUBROUTINE CHANGE(EK,IX,IY,NND,M,L,IR) CHANGE
DIMENSION EK( M, L) CHANGE
KX=IX CHANGE
KY=IY CHANGE
M2=2*NND CHANGE
IF(IR .EQ. 1)M2=L CHANGE
DO 10 I=1,2 CHANGE
DO 5 J=1,M2 CHANGE
AX=EK (KX, J) CHANGE
EK(KX,J)=EK(KY,J) CHANGE

5 EK(KY,J)=AX CHANGE
KX=KX.1 CHANGE

10 KY=KY+1 CHANGE
IF(IR .EQ. 1)RETURN CHANGE
KX=KX-2 CHANGE
KY=KY-2 CHANGE
DO 20 I=1,2 B-25 CHANGE
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DO 15 J=1,M2 CHANGE
AX=EK (J, KX) CHANGE
EK(J,KX)=EK(J,KY) CHANGE

15 EK(J,KY)=AX CHANGE
KX=KX+l CHANGE

20 KY=KY.1 CHANGE
RETURN CHANGE
END CHANGE

*DECK TRNSFM
SUBROUTINE TRNSFM(EK,AA,B,C,MMNND,M) TRNSFM
DIMENSION EK(12,12),AA(3,3),B( M, M),C( M, M) TRNSFM
M2=2*NND TRNSFM
IF(NND .GT. 4)M2=8 TRNSFM
M3=MM*NND TRNSFM
IF(NND .GT. 4)M3=4*MM TRNSFM
DO 100 I=1,M2 TRNSFM
JA=MM TRNSFM
KA=0 TRNSFM
IA=0 TRNSFM
DO 100 J=1,M3 TRNSFM
B(I,J)=0.0 TRNSFM
IF(.J-JA)90,90,80 TRNSFM

80 JA=JA+MM TRNSFM
KA=KA.2 TRNSFM
IA=IA+MM TRNSFM

90 JAA=J-IA TRNSFM
DO 100 K=1,2 TRNSFM
KAA=K+KA TRNSFM

100 B(I,i)=B(I,J)+EK(I,KAA)*AA(K,JAA) TRNSFM
DO 200 J=1,M3 TRNSFM
JA=MM TRNSFM
KA=0 TRNSFM
IA=0 TRNSFM
DO 200 I=1,M3 TRNSFM
C (I, J) =0.0 TRNSFM
IF(I-JA)190,190,180 TRNSFM

180 JA=JA+MM TRNSFM
KA=KA.2 TRNSFM
IA=IA+MM TRNSFM

190 JAA=I-IA TRNSFM
DO 200 K=1,2 TRNSFM
KAA=K+KA TRNSFM

200 C(I,J)=C(I,J).AA(K,JAA)*B(KAA,J) TRNSFM
RETURN TRNSFM
END TRNSFM

*DECK ELSTIF
SUBROUTINE ELSTIF(A,B,C,AE,MM,AL,E) ELSTIF
DIMENSION A(3,3),B(12,12),C(12,12) ELSTIF
DO 100 I = 1,6 ELSTIF
DO 100 J =1,6 ELSTIF
C(I,J) = 0.0 ELSTIF

100 CONTINUE ELSTIF
EK= (AE*E) /AL ELSTIF
DO 25 I=1,MM ELSTIF
J=I+MM ELSTI F
B(1,I)=EK*A(1,I) ELSTIF
B(1,J)= -B(1,I) ELSTIF

25B(2,J) =B(1,I) ELSTIF
DO B26 =I,MM ELSTIF
DO 26 J=1,MM B-26 ELSTIF
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26 C(I,J)=A(1,I)*B(1,J) ELSTIF
DO 36 I=1,MM ELSTI F
Il=I+MM ELSTIF
DO 36 J=1,MM ELSTIF
Jl1=J+MM ELSTIF
C(IJ1l)=-C(I,J) ELSTIF
C(Jl,i)=-C(I,J) ELSTIF

36 C(I1,Jl)=C(IJ) ELSTIF
RETURN ELSTIF
END ELSTIF

*DECK ASEMBL
SUBROUTINE ASEMiBL (A,B,MA,MB,MC,MD ,MM, ID,NNODES,M) ASEMBL
DIMENSION A(l),B(MM),ID(l),NA(4),NAA(3) ASEMBL
IX(I,J)=I* (J-1) .1 ASEMBL
NND=NNODES ASEMBL
IF(NND .GT. 4)NND=4 ASEMBL
M2=NND*MM ASEMBL
NA(1)=IX(MM,MA) ASEMBL
NA (2) =IX (MM, MB) ASEMBL
IF(NNODES .GE. 3)NA(3)=IX(MM,MC) ASEMBL
IF(NNODES -GE. 4)NA(4)=IX(MM,MD) ASEMBL
IF(NNODES .LE. 3)00 TO 5 ASEMBL
DO 4 I=1,3 ASEMBL
KX=I/3 ASEMBL
KY=I/2 ASEMBL
IF(NA(KX.2) .LT. NA(KY.3))CO TO 4 ASEMBL
KH=NA (KX+2) ASEMBL
NA (KX.2) =NA (KYi-3) ASEMBL
NA (KY+3) =KH ASEMBL

4 CONTINUE ASEMBL
5 DO 10 I=2,NND ASEMBL

10 NAA(I-1)=NA(I)-NA(I-)-MM ASEABL
KH=MM ASEMBL
IAA=NA (1) ASEMBL,
KHH=l ASEMBL
DO 30 J=1,M2 ASEMBL
IF(J .LE. KH)GO TO 15 ASEMBL
KHH=KHH+l ASEMBL
IAA=NA (KHH) ASEMBL
KH=KH-+MM ASEMBL

15 JX=ID (IAA) -IAA+NA (1) ASEMBL
KY=MM ASEMBL
DO 25 I=1,J ASEMBL
IF(J .LE.KY AOR. I .LE. KY)GO TO 20 ASEMBL
KX=I /MM ASEMBL.
JX=JX+NAA (KX) ASEMBL
KY=KY.MM ASEMBL

20 A (JX) =A (JX)+B (I, J) ASEMBL
25 JX=JX.1 ASEMBL
30 IAA=IAA~i ASEMBL

RETURN ASEMBL
END ASEMBL

*DECK PRINTK
SUBROUTINE PRINTK (SK, IDIAG, NN) PRINTK
DIMENSION SK(l) ,IDIAG(1) PRINIK
DO 80 I=1,NN PRINIK
IF(I AGT. 1) GO TO 65 PRINTK
KX=l PRINTK
KY=1 PRINTK
GO TO 70 B-7PRINIK

65 KX=IDIAG(I-1).1 -2 PRINTK
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KY=IDIAG (I) PRINTK
70 WRITE(6,3)I PRINTK
80 WRITE (6,2) (SK(K) ,K=KX,KY) PRINTK
3 FORMAT (14) PRINTK
2 FORMAT(10X, 10E12 .4) PRINTK

RETURN PRINTK
END PRINTK

*DECK REDUCE
SUBROUTINE REDUCE (F, IB,N,NB,L,NN) REDUCE
DIMENSION F(NN,L) ,IB(l) REDUCE
DO 5 J=1,L REDUCE

IH=NBREDUC
NH=NB REDUCE

I bIB (IH) REDUCE
IF(I-NH) 2,4,4 REDUCE

2 NH1=NH-1 REDUCE
DO 3 K=INHI REDUCE
K1=K+l REDUCE

3 F(K,J) =F(Kl,J) REDUCE
4 IH-=IH-1 REDUCE

NH=NH- 1 REDUCE
IF(IH.EQ.0) GO TO 5 REDUCE
GO T01 REDUCE

5 CONTINUE REDUCE
RETURN REDUCE
END REDUCE

*DECK BOUND2
SUBROUTINE BOUND2 (A,18, N, NB, ID, IC) BOUND2
DIMENSION A(1) ,IB(1) ,ID(1) ,IC(1) BOUND2
IH=NB BOUND2
NH=N BOUND2
DO 30 JA=1,NB BOUND2
IA=IB (IH) BOUND2
IF(IA .GE. NH) GO TO 20 BOUND2
KH=IA.1 BOUND2
IF(IA .GT. 1) GO TO 5 BOUND2
KX=l BOUND2
JX=1 BOUND2
GO TO 6 BOUND2

5 JX=ID(IA)-ID(IA-1) B01JP42
KX=ID (IA-i) .1 BOUND2

6 DO 10 I=KH,NH BOUND2
KY=l BOUND2
IF(IC(I) .LE. IA) GO TO 7 BOUND2

11=1 BOUND2
KY=0 BOUND2
GO TO 8 BOUND2

7 IC(1-1)=IC(I) BOUND2
Il=I-1 BOUND2

8 K=IC(I) BOUND2
ID (I-1) ID (I) -JX-KY BOUt4D2
DO 10 J=K,Il BOLJND2
IF(J EQ. IA) JX=JX~l BOUND2
KXX=KX. JX BOUND2
A (KX) =A (KXX) BOLJND2

10 KX=KX.1 BOUND2
20 NH=NH-1 BOUND2

IH=IH-1 BOUND2
30 CONTINUE BOUND2

RETURN B-28 BOUND2
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END BOUND2
*DECK GAUSS

SUBROUTINE GAUSS(A,F,D,IC,ID,L,N,NN,NDCOMP) GAUSS
DIMENSION A(1),IC(1), ID(1),F(NN,L),D(NN,L) GAUSS
IF(NDCOMP .EQ. 1)GO TO 15 GAUSS
DO 10 I=I,N GAUSS
I1=I-1 GAUSS
DO 9 J=I,N GAUSS
IF(IC(J) .GT. I)GO TO 9 GAUSS
IX=ID (J) -J+I GAUSS
IF(I1 .EQ. O)GO TO 8 GAUSS
DO 7 (=1,11 GAUSS
IF(IC(J) .GT. K .OR. IC(I) .GT. K)GO TO 7 GAUSS
KX=ID (I) -I+K GAUSS
KY=ID(J)-J K GAUSS
KZ=ID (K) GAUSS
A (IX) =A (IX) - (A (KX) *A(KZ) * A (KY)) GAUSS

7 CONTINUE GAUSS
8 IF(I .EQ. J)GO TO 9 GAUSS

KZ=ID (I) GAUSS
IF(A(KZ) .EQ. 0.)GO TO 100 GAUSS
A (IX) =A (IX)/A (KZ) GAUSS

9 CONTINUE GAUSS
10 CONTINUE GAUSS
15 DO 40 K=1,L GAUSS

DO 30 I=1,N GAUSS
D(I,K)=F(I,K) GAUSS
I1=I-1 GAUSS
IF(I1 .EQ. 0) GO TO 30 GAUSS
DO 20 J=1,I1 GAUSS
IF(IC(I) .GT. J)GO TO 20 GAUSS
IX=ID (I) -I J GAUSS
D(I,K)=D(I,K)-A(IX)*D(J,K) GAUSS

20 CONTINUE GAUSS
30 CONTINUE GAUSS

40 CONTINUE GAUSS
DO 70 I=1,N GAUSS
KX=ID(I) GAUSS
DO 70 K=I,L GAUSS

70 D(I,K)=D(I,K)/A(KX) GAUSS
DO 90 K=1,L GAUSS
IX=N GAUSS
DO 90 I=2,N GAUSS
IX=IX-1 GAUSS
I1=I-1 GAUSS
KX=IX GAUSS
DO 80 J=1,I1 GAUSS
KX=KX+l GAUSS
IF(IC(KX) .GT. IX)GO TO 80 GAUSS
KY=ID (KX) -KX+IX GAUSS
D(IX,K)=D(IX,K) -A(KY) *D(KX,K) GAUSS

80 CONTINUE GAUSS
90 CONTINUE GAUSS

GO TO 110 GAUSS
100 WRITE(6,120) GAUSS
120 FORMAT(///2X,21HSTRUCTURE IS UNSTABLE///) GAUSS
110 RETURN GAUSS

END GAUSS
*DECK RESTOR

SUBROUTINE RESTOR( D,IB,N,NB,L,NN) RESTOR
DIMENSION D(NN,L),IB(1) ,TDR1 (10) ,TDR2(10) B-29 RESTOR
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NH=N-NB RESTOR
IH=l RESTOR

1 I=IB(IH) RESTOR
IF(I.GT.NH) GO TO 7 RESTOR
DO 2 K =1,L RESTOR
TDR1(K) = D(I,K) RESTOR

2 D(I,K) = 0.0 RESTOR
3 J =I +.1 RESTOR
IF (J G.0T NH) Go To s RESTOR
DO 4 K=1,L RESTOR

4 TDR2(K)=D(J,K) RESTOR
5 DO 6 K=1,L RESTOR

D(J,K) =TDR1(K) RESTOR
6 TDR1(K)=TDR2(K) RESTOR

IF(I.GE.NH) GO TO 9 RESTOR
1=T+1 RESTOR
0O TO 3 RESTOR

7 DO 8 K=1,L RESTOR
8 D(I,K)=-O. RESTOR9 IF(IH.GE.NB) GO TO 10 RESTOR

IH=IH.1 RESTOR
NH=NH. 1 RESTOR
GO TO I RESTOR

10 CONTINUE RESTOR
PFTIIPN RESTOR
END RESTOR

* DECK ELFORC
SUBROUTINE ELFORC (AA, DR, EDR,MM,MA,MBMC,MD,NNODES, LOADS, NN) ELFORC
DIMENSION AA(3,3) ,DR(NN,LOADS) ,EDR(12,LOADS), NCON(4) ELFORC
NCON(1)=MM*(MA -1)41 ELFORC
NCON(2)=MM*(MB -1)+l ELFORC
IF(NNODES .GE. 3)NCON(3)=MM*(MC -1)+l ELFORC
IF(NNODES .GE. 4)NCON(4)MM*(MD -1)+l ELFORC
NND=NNODES ELFORC
IF(NND .GT. 4)NND=4 ELFORC
NDSP=1 ELFORC
IF(NND .GT. 2)NDSP=2 ELFORC
DO 86 K=1,LOADS ELFORC
KH=l ELFORC
DO 86 KK=1,NND ELFORC
DO 86 I=1,NDSP ELFORC
KX=NCON (KK) ELFORC
EDR(KH,K)=0 ELFORC
DO 85 J=1,MM ELFORC
EDR(KH,K)=EDR(KH,K).AA(11 J)*DR(KX,K) ELFORC

85 KX=KX+1 ELFORC
86 KH=KH+l ELFORC

RETURN ELFORC
END ELFORC

*DECK QLSTRS
SUBROUTINE QLSTRS(EDR, EDDR,XI ,ETA,MAA,MBBMCC,SX,Sy, SXY, EFSTRS,
IEXM,SNMAXEE,AXAY,AZALSLOADS,SSX,SSY,SSXY,EFFSTRKTREKKENG,
2NND)
DIMENSION EDR(12,LOADS) ,EDDR(12,LOADS) ,XI(1).,ETA(l) ,MAA(l),MBB(1), QLSTRS
1MCC(l),SX(l),SY(l),SXY(l) ,EFSTRS(1) ,SSX(4,LOADS) ,SSY(4,LOADS), QLSTRS
2SSXY(4,LOADS) ,EFFSTR(4,LOADS) ,KTR(1) ,EKK(12D12) ,ENG(l),ENGG(10) QLSTRS
3,ALS(5) ,EE(3,3) ,EXM(l) ,SNMAX(l)
DO 115 K=1,LOADS QLSTRS
ENG(K)=0. QLSTRS
EXM(K) = 0.0
KX=0 B-30 QLSTRS
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DO 115 I=9,10 QLSTRS
KXnKX+ 1 QLSTRS
EDI (I, K) =0. QLSTRS
DO 114 J=1,8 QLSTRS

114 EDR(I,K)=EDR(I,K).EKK(KX,J)*EDR(.JK) QLSTRS
EDR(I,K)=-EDR(I,K) 4LSTRS

115 CONTINUE QLSTRS
DO 116 K=1,LOADS IQLSTRS
SNMAX(K ) = 0.0
EDDR(5,K)=EDR(9,K) QLSTRS

116 EDDR(6,K)=EDR(10,K) 4LSTRS
KX=l QLSTRS
KY=3 QLSTRS
DO 200 I=1,4 IQLSTRS
IF(I .LT. 4)GO TO 117 QLSTRS
KX=1 QLSTRS
KY=7 QLSTRS

117 DO 119 J=1,2 QLSTRS
DO 118 K=1,LOADS QLSTRS
EDDR(J,K)=EDR(KX,K) Q~LSTRS

118 EDDR(Ji2,K)=EDR(KY,K) QLSTRS
KX=KX. 1 QLSTRS

119 KY=KY+1 QLSTRS
CALL STRESS(EDDR,XI,ETA,MAA(I) ,MBB(I) ,MCC(I) ,SX,SY,SXY,EFSTRS, QLSTRS

1EXM,EE,AX,AYAZ,ALS, LOADS,ENGG,TRIANG,NND)
DO 201 J=1,LOADS QLSTRS
IF (ABS(SNMAX(J)) .LT. ABS(EXM(J)))SNMAX(J) = EXM(J)
ENG (J) =ENG (J) .ENGG (J) QLSTRS
SSX(I, J)=SX(J) QLSTRS
SSY(I, J)=SY(J) QLSTRS,
SSXY (I , J) =SXY (J) QLSTRS
EFFSTR (I, J) =EFSTRS (J) QLSTRS
IF(NND .GT. 4)EFFSTR(I,J)=ABS(SXY(J)/ALS(5)) QLSTRS

201 CONTINUE QLSTRS
200 CONTINUE QLSTRS

DO 205 J=1,LOADS QLSTRS
AMAX=0O. QLSTRS
DO 204 I=1,4 QLSTRS
IF(AMAX .GT. EFFSTR(IJ))GO TO 204 QLSTRS
AMAX=EFFSTR (I, J) QLSTRS
KTR(J)=I QLSTRS

204 CONTINUE QLSTRS
205 CONTINUE QLSTRS

RETURN QLSTRS
END QLSTRS

*DECK STRESS
SUBROUTINE STRESS(UV,X,Y,MA,MB,MC,SXSY,SXY,EFST,EXM,EE,AX,AY,AZ,
lALS, L,ENG, TRIANG,NND)
DIMENSION UV(12,L),X(1),Y(1),SX(1),SY(1),SXY(1),EX(10),EY(10), STRESS
1EXY(lO),A(3,3),EXM(1), EFST(1),ENG(1),EE(3,3),ALS(5)
CALL CRAMER(A,TRIANGX,Y,MA,MBMC) STRESS
DO 30 K=1,L STRESS
EX(K)=0O. STRESS
EY (K) =0. STRESS
EXY(K)=0O. STRESS
KX=0O STRESS
DO 20 I=1,3 STRESS
IX=I *KX STRESS
EX(K)=EX(K) +A(1 ,I) *UV(IX,K) STRESS
EY (K) =EY (K)*A (2,1) .UV (IX 1, K) STRESS
EXY(K)=EXY(K)A(2,I)*U(IX,K).A(1,I).LJV(IX.1,K) B-31 STRESS
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20 KX=KX.1 STRESS
EXM(K) = EX(K)*AX + EY(K)*AY + EXY(K)*AZ

30 CONTINUE STRESS
DO 40 K=1,L STRESS
SX(K)=EE(1,1)*EX(K).EE(1,2)*EY(K)+EE(1,3)*EXY(K) STRESS
SY (K)=EE(2, 1) *EX(K) .EE(2,2) *EY(K) +EE(2,3) *EXY (K) STRESS

40 SXY(K)=EE(3,1)*EX(K)+EE(3,2)*EY(K)+EE(3,3)*EXY(K) STRESS
DO 50 K=1,L STRESS
ENG (K) =(SX (K) tEX (K) +SY (K) *EY (K) +SXY (K) *EXY (K)) sTRIANG STRESS
IF (NND G T. 4) ENG (K) =(SXY (K) sEXY (K)) *TRIANG STRESS
EX (K) =SX (K) sAXsSY (K) sAY.SXY (K) *2. *AZ STRESS
EY(K)=SX(K) sAYsSY (K) sAX-SXY (K) *2. *AZ STRESS

50 EXY (K) =-SX (K) sAZ.SY (K) sAZsSXY (K) *(AX-AY) STRESS
DO 90 K=1,L STRESS
AAX=ALS (1) STRESS
AAY=ALS (3) STRESS
AAXY=ALS (5) STRESS
IF(EX(K) .LT. 0.)AAX=ALS(2) STRESS
IF(EY(K) .LT. 0.)AAY=ALS(4) STRESS
EFST(K)=SQRT((EX(K)/AAX)*2(EY(K)AAY)**2-((EX(K)*EY(K))/ STRESS

1 (AAX*AAY)) *(EXY(K) /MXY) **2) STRESS
90 CONTINUE STRESS

RETURN STRESS
END STRESS

*DECK TRECON
SUBROUTINE TRECON(EE,AA,XAG,YAG,ZAG,AX,AY,AZ,IANGIND) TRECON
DIMENSION EE(3,3),AA(3,3),AE(3,3) TRECON
CTA=COS (XAG) TRECON
STA=SIN (XAG) TRECON
IF(IANG .EQ. 1)00 TO 20 TRECON
AX=COS (XAG) TRECON
AY=COS (YAC) TRECON
AZ=COS (ZAG) TRECON
AXX=AX*AA(1, 1)sAY*A(1 ,2).AZ*AA(1,3) TRECON
AYY=AX*AA(2, 1) eAY*AA(2,2) .AZ*AA(2,3) TRECON
AX=SQRT (AXX**2sAYY**2) TRECON
CTA=AXX/AX TRECON
STA=AYY/AX TRECON

20 CONTINUE TRECON
IF(IND .EQ. 1)00 TO 25 TRECON
SAVE=CTA TRECON
P14=COS (3.141592654 /4.) TRECON
IF (IND-3)26,27,28 TRECON

26 CTA=-STA TRECON
STA=SAVE TRECON
GO TO 25 TRECON

27 CTA=P14* (CTA-STA) TRECON
STA=P14 *(SAVE+STA) TRECON
GO TO 25 TRECON4

28 CTA=-P14* (CTA.STA) TRECON
STA=PI4* (SAVE-STA) TRECON

25 CONTINUE TRECON
AX=CTA**2 TRECON
AY=STAs *2 TRECON
AZ=CTA*STA TRECON
DO 30 I=1,3 TRECON
AE(I,1)=EE(I,1)*AX.EE(I,2)*AY-EE(I,3)*2. *AZ TRECON
AE(I,2)=EE(I,1)'AYsEE(I,2)*AX.EE(I,3)*2.*AZ TRECON

30 AE(I,3)=EE(I,1)*AZ-EE(I,2)*AZsEE(I,3)*(AX-AY) TRECON
DO 40 I=1,3 TRECON
EE(1,I)=AX*AE(1,I).AY*AE(2,I)-2.*AZ*AE(3,I) B-32 TRECON
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EE(2,I)=AY*AE(1,I).AX*AE(2,I).2.*AZ*AE(3,I) TRECON
40 EE(3,I)=AZ*AE(1,I)-AZ*AE(2,I).(AX-AY)*AE(3,I) TRECON

RETURN TRECON
END TRECON

*DECK ELSTIC
SUBROUTINE ELSTIC(E,E2, PMU, SM, EE) ELSTIC
DIMENSION EE(3,3) ELSTIC
PMU1.- (PMU**2)*(E2/El) ELSTIC
EE(1, 1) =E1/PMUl ELSTIC
EE(2, 1)=(E2*PMU) /PMUl ELSTIC
EE(3,1)=0. ELSTIC
EE(2,2)=E2/PMUl ELSTIC
EE(3,2)=0. ELSTIC
EE(3,3)=SM ELSTIC
DO 18 I=1,2 ELSTIC
IP=I .1 ELSTIC
DO 18 J=IP,3 ELSTIC

18 EE(I,J)=EE(J,I) ELSTIC
RETURN ELSTIC
END ELSTIC

*DECK PRNTDR
SUBROUTINE PRNTDR(A,B,X,Y,Z,N,M,L,NJ,NP,NN) PRNTDR
DIMENSION A(NNl,L) ,8(NN,L) ,X(l) ,Y(1) ,Z(1) PRNTDR
NP=NP. 1 PRNTDR
LINES=l PRNTDR
WRITE (6, 1)NP PRNTDR
WRITE(6,2) PRNTDR
DO 10 I=1,NJ PRNTDR
IF (LINES.L-54)4,3,3 PRNTDR

3 LINES=1 PRNTDR
WRITE(6, 1) NP PRNTDR
WRITE(6, 2) PRNTDR
NP=NP. 1 PRNTDR

4 KH=M*I PRNTDR
KHH=KH-M+ 1 PRNTDR
IF(M .LT. 3)G0 TO 11 PRNTDR
WRITE(6, 9)I,X(I),Y(I),Z(I),( A(J,1),J=KHH,KH),( B(J,1),J=KHH,KH) PRNTDR
GO TO 12 PRNTDR

11 WRITE(6, 5)I,X(I),Y(I), ( A(J,1),J=KHH,KH),( B(J,1),J=KHH,KH) PRNTDR
12 IF(L .EQ. 1) GOTO 8 PRNTDR

DO 7 K=2,L PRNTDR
IF(M .LT. 3)GO TO 13 PRNTDR
WRITE (6, 6) ( A(J,K) ,J=KHH,KH), ( B(J,K), J=KHH,KH) PRNTDR
GO TO 7 PRNTDR

13 WRITE (6, 15) ( A(J,K) ,J=KHH,KH), ( B(J,K), J=KHH,KH) PRNTDR
7 CONTINUE PRNTDR
8 LINES =LINES *L+1 PRNTDR

I F(L .Eq. I)LINES=LINES-1 PRNTDR
10 CONTINUE PRNTDR
1 FORMAT(lH1,120X,SHPAGE ,13/) PRNTDR
2 FORMAT( IX,5HJOINT,8X,2H-X,8X,2H-Y,8X,2H-Z,8X,7HFORCE-X, PRNTDR

17X,7HFORCE-Y,7X,7HFORCE-Z,8X,7HDISPL-X, 1OX,7HDISPL-Y,1OX, PRNTDR
27HDISPL-Z//) PRNTDR

9 FORMAT(/I5,Fl4.3,F10.3,FIO.3,F12.3,Fl4 .3,F14 .3,1PE18.8, PRNTDR
IIPE17.8,lPE17.8) PRNTDR

5 FORMAT(/I5,F14 .3,FlO.3, 10X,F12.3,Fl4 .3,14X,lPE18.8,1PE17.8) PRNTDR
6 FORMAT(39X,F12.3,Fl4.3,Fl4.3,1PE18.8,1PE17.8,lPE17.8) PRNTDR
15 FORMAT(39X,F12.3,F14 '1,14X,lPE18.8,IPE17.8) PRNTDR

RETURN PRNTDR
END PRNTDR

*DECK LAYCALC
B-33
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SUBROUTINE LAYCALC (L ,AAE, LAM,TFFR1 ,TFFR2 ,NZDEC, NNDEG, LAYCALC
1NFDEC,THKLAM,LFLAG1 ,LFLAC2,NKINDNCOUNT) LAYCALC
DIMENSION NZDEG(1) ,NNDEG(l) ,NFDEG(l) ,LFLAG1(1) ,LFLAG2(1) LAYCALC
1,NKIND(1) LAYCALC
NCOUNT = NCOUNT + 1 LAYCALC
I = NCOUNT LAYCALC
NNDEG(L) = 0 LAYCALC
NZDEC(L) = 0 LAYCALC
NFDEG(L) = 0 LAYCALC
LFLAC1(L) = 0 LAYCALC
LFLAG2(L) = 0 LAYCALC
NKIND(I) = L LAYCALC

C 90 DEG FIBER DRECTION LAYCALC
A = TFFR2/THKLAM LAYCALC
LA = A LAYCALC
IF (LA GCT. 0) GO TO 10 LAYCALC
NNDEC(L) =1LAYCALC

GO TO 50 LAYCALC
10 IF ((A-LA) GCT. .5) GO TO 15 LAYCALC

NNDEG(L) = LA LAYCALC
GO TO 50 LAYCALC

15 NNDEC(L) = LA +1 LAYCALC
50 CONTINUE LAYCALC

C 0 DEC FIBER DIRECTION LAYCALC
B = TFFRI/THKLAM LAYCALC
LB = B LAYCALC
IF (LB .GT. 0) GO TO 60 LAYCALC
NZDEG(L) = 1 LAYCALC
GO TO 100 LAYCALC

60 IF ((B-LB) GT. .5) GO TO 65 LAYCALC
NZDEC(L) = LB LAYCALC
CO TO 100 LAYCALC

65 NZDEC(L) = LB + 1 LAYCALC
100 CONTINUE LAYCALC

C 45 DEC FIBER DIRECTION LAYCALC
C = (AAE - TFFRI - TFFR2)/THKLAM LAYCALC
LC = C LAYCALC
K = MOD(LC,2) LAYCALC
IF (K NE. 0) GO TO 110 LAYCALC
NFDEG(L) = LC LAYCALC
GO TO 150 LAYCALC

110 IF (LC GCT. 1) CO TO 160 LAYCALC
NFDEC(L) = 2 LAYCALC
CO TO 150 LAYCALC

160 NFDEC(L) = LC 1 LAYCALC
150 CONTINUE LAYCALC4

C CHECK LAYCALC
LT = NNDEC CL) + NZDEC CL) + NFDEC CL) LAYCALC
IF (LT .EQ. LAM) CO TO 1000 LAYCALC
IF (LT GCT. LAM) CO TO 800 LAYCALC
NZDEC(L) =NZDEG(L) + 1 LAYCALC
LFLAGI(L) I LAYCALC
LT = LT + 1 LAYCALC
IF (LT .EQ. LAM) GO TO 1000 LAYCALC
LFLAC2(L) = 1 LAYCALC
CO TO 1000 LAYCALC

800 NZDEC(L) = NZDEG(L) - I LAYCALC
LFLAC1(L) = 1 LAYCALC

1000 RETURN LAYCALC
END LAYCALC

*DECK LAYPR B- 34
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SUBROUTINE LAYPR(LAM,NZDEG,NNDEG,NFDEG,LFLAG1,LFLAG2, LAYPR
2ANKIN), NCOUNT, NFAC) LAYPR
DIMENSION LAM(1) ,NZDEG(1) ,NNDEG(1) ,NFDEG(1) ,LFLAG1 (1) ,LFLAG2(1), LAYPR
1NKIND(l) LAYPR
WRITE(6,10) LAYPR

10 FORMAT(1H1 ,30X, 1BHCOMPOSITE ELEMENTS///) LAYPR
WRITE(6, 20) LAYPR

20 FORMAT(5X,4HMEMB,5X,gHTOTAL NO.,5X,52HTHE NUMBER OF LAYERS IN EACH LAYPR
1 OF THE FIBER DIRECTIONS/,14X,9HOF LAYERS,13X,lH0,15X,2H90, LAYPR
214X, 2H45//) LAYPR
DO 100 L = 1,NCOUNT LAYPR
I = NKIND(L) LAYPR
IF (LFLAG1(I) .EQ. 0) GO TO 50 LAYPR

4IF (LFLAG2(I) .EQ. 0) GO TO 25 LAYPR
C OUTPUT FOR THIS LINE SHOULD BE NOTED BY THE USER LAYPR

WRITE(6,30) I,LAM(I) ,NZDEG(I) ,NNDEG(I) ,NFDEG(I) LAYPR
30 FORMAT(6X,I3,8X,I3,15X,I3, 14X,13,13X,13,20X,2H**) LAYPR

GO TO 100 LAYPR
25 WRITE(6,32) I,LAM(I),NZDEG(I),NNDEG(I) ,NFDEG(I) LAYPR
32 FORMAT(6X, 13,8X,13, 15X, 13,14X,13, 13X,13, lOX, 1H*) LAYPR

GO TO 100 LAYPR
50 WRITE(6,34) I,LAM(I) ,NZDE (I) ,NNDEG(I) ,NFDEO (I) LAYPR
34 FORMAT(6X,I3,8X,I3,15X,I3,14X,I3,13X 13) LAYPR
100 CONTINUE LAYPR

NFAC = NCOUNT LAYPR
NCOUNT = 0 LAYPR
RETURN LAYPR
END LAYPR
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